Pregunta
Solve for \( x \) : \[ -x=-2(3 x-5)-10 \]
Ask by Moreno Edwards. in the United States
Jan 24,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( x = 0 \)
Solución
To solve the equation:
\[
-x = -2(3x - 5) - 10
\]
**Step 1: Distribute the \(-2\) on the right side**
\[
-x = -2 \cdot 3x + (-2) \cdot (-5) - 10
\]
\[
-x = -6x + 10 - 10
\]
**Step 2: Simplify the right side**
\[
-x = -6x + 0
\]
\[
-x = -6x
\]
**Step 3: Add \(6x\) to both sides to get all \(x\) terms on one side**
\[
- x + 6x = -6x + 6x
\]
\[
5x = 0
\]
**Step 4: Solve for \(x\)**
\[
x = \frac{0}{5}
\]
\[
x = 0
\]
**Conclusion:**
The solution to the equation is:
\[
x = 0
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Mind Expander
To solve the equation \(-x = -2(3x - 5) - 10\), let's first simplify the right side: 1. Distribute \(-2\) into the parenthesis: \[ -2(3x - 5) = -6x + 10 \] 2. Now, substitute this back into the equation: \[ -x = -6x + 10 - 10 \] 3. Simplifying further gives: \[ -x = -6x \] 4. To isolate \(x\), add \(6x\) to both sides: \[ -x + 6x = 0 \] 5. This combines to: \[ 5x = 0 \] 6. Finally, divide both sides by \(5\): \[ x = 0 \] So, the value of \(x\) is \(0\).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium