Pregunta
upstudy study bank question image url

From a group of 10 boys and 13 girls, a committee of 5 students is chosen at random. a. What is the probability that all 5 members on the committee will be girls? b. What is the probability that all 5 members of the committee will be boys? c. What is the probability that there will be at least 1 girl on the committee? a. The probability that all 5 members on the committee will be girls is \( \frac{117}{3059} \). (Type an integer or a simplified fraction.) b. The probability that all 5 members on the committee will be boys is \( \frac{36}{4807} \). (Type an integer or a simplified fraction.) c. The probability that there will be at least 1 girl on the committee is \( \square \). (Type an integer or a simplified fraction.)

Ask by Bartlett Conner. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that there will be at least 1 girl on the committee is \( \frac{4771}{4807} \).

Solución

To determine the probability that there will be **at least one girl** on the committee, we can use the complementary probability approach. This involves calculating the probability of the opposite event (i.e., **all committee members are boys**) and then subtracting that from 1. ### Step-by-Step Solution: 1. **Total Number of Students:** - Boys: 10 - Girls: 13 - **Total:** \( 10 + 13 = 23 \) students 2. **Total Number of Ways to Choose 5 Students:** \[ \binom{23}{5} = \frac{23!}{5!(23-5)!} = 33,649 \] 3. **Number of Ways to Choose 5 Boys:** \[ \binom{10}{5} = \frac{10!}{5!(10-5)!} = 252 \] - **Probability that all 5 members are boys:** \[ P(\text{all boys}) = \frac{252}{33,649} = \frac{36}{4,807} \] 4. **Probability of At Least One Girl:** \[ P(\text{at least one girl}) = 1 - P(\text{all boys}) = 1 - \frac{36}{4,807} = \frac{4,807 - 36}{4,807} = \frac{4,771}{4,807} \] - This fraction is already in its simplest form since 4,771 and 4,807 are coprime (their greatest common divisor is 1). ### Final Answer: c. The probability that there will be at least 1 girl on the committee is \( \frac{4771}{4807} \). **Answer:** Problem c Answer: The probability is \( \frac{4771}{4807} \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the probability that there will be at least 1 girl on the committee, we can use the complement rule. First, we need to calculate the total number of ways to choose any 5 students from the group of 23 (10 boys + 13 girls): \[ \text{Total combinations} = {23 \choose 5} \] Now we can say that the probability of having at least 1 girl is equal to 1 minus the probability of having no girls (which means all boys). The number of ways to select 5 boys from 10 is: \[ {10 \choose 5} \] Thus, the probability of selecting all boys (no girls) is: \[ P(\text{all boys}) = \frac{{10 \choose 5}}{{23 \choose 5}} \] Finally, we find the probability of having at least one girl: \[ P(\text{at least 1 girl}) = 1 - P(\text{all boys}) \] Calculating these combinations: \[ {10 \choose 5} = 252, \quad {23 \choose 5} = 33649 \] So: \[ P(\text{all boys}) = \frac{252}{33649} \] Now plug it into the equation for at least one girl: \[ P(\text{at least 1 girl}) = 1 - \frac{252}{33649} = \frac{33649 - 252}{33649} = \frac{33397}{33649} \] Therefore, the probability that there will be at least 1 girl on the committee is \( \frac{33397}{33649} \).

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad