Pregunta
upstudy study bank question image url

\( 2 x^{2}=-x+5( \) Are the roots real or Unreal

Ask by Ross Ortiz. in South Africa
Dec 21,2024

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The roots of the equation \( 2x^{2} = -x + 5 \) are real.

Solución

Solve the quadratic equation by following steps: - step0: Solve using the quadratic formula: \(2x^{2}+x-5=0\) - step1: Solve using the quadratic formula: \(x=\frac{-1\pm \sqrt{1^{2}-4\times 2\left(-5\right)}}{2\times 2}\) - step2: Simplify the expression: \(x=\frac{-1\pm \sqrt{1^{2}-4\times 2\left(-5\right)}}{4}\) - step3: Simplify the expression: \(x=\frac{-1\pm \sqrt{41}}{4}\) - step4: Separate into possible cases: \(\begin{align}&x=\frac{-1+\sqrt{41}}{4}\\&x=\frac{-1-\sqrt{41}}{4}\end{align}\) - step5: Rewrite the fraction: \(\begin{align}&x=\frac{-1+\sqrt{41}}{4}\\&x=-\frac{1+\sqrt{41}}{4}\end{align}\) - step6: Rewrite: \(x_{1}=-\frac{1+\sqrt{41}}{4},x_{2}=\frac{-1+\sqrt{41}}{4}\) To determine whether the roots of the equation \( 2x^{2} = -x + 5 \) are real or unreal, we first rearranged the equation into standard form: \[ 2x^{2} + x - 5 = 0 \] Next, we solved this quadratic equation and found the roots: \[ x_{1} = -\frac{1 + \sqrt{41}}{4}, \quad x_{2} = \frac{-1 + \sqrt{41}}{4} \] Since the roots involve the square root of a positive number (\(\sqrt{41}\)), both roots are real numbers. Therefore, the roots of the equation are real.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find out if the roots are real or unreal, we can use the discriminant \( D = b^2 - 4ac \) from the quadratic formula \( ax^2 + bx + c = 0 \). In your equation, rearranging gives us \( 2x^2 + x - 5 = 0 \), where \( a = 2 \), \( b = 1 \), and \( c = -5 \). Plugging into the discriminant gives \( D = (1)^2 - 4(2)(-5) = 1 + 40 = 41 \). Since 41 is greater than zero, the roots are indeed real and distinct! Now, did you know that for any quadratic equation, if the discriminant is positive, the graph will intersect the x-axis at two points? If it's zero, then you'll have one repeated root (or a "double root"), and if it's negative, the graph won't touch the x-axis at all—leaving you with complex roots or duo of "unreal" solutions. It's like a little story in numbers, revealing secrets about the function!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad