onvert the given equation from standard to general form \[ (x-5)^{2}+(y-4)^{2}=36 \]
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To convert the equation from standard form to general form, we start with the standard equation given: \[ (x-5)^{2}+(y-4)^{2}=36 \] First, expand both squares: \[ (x-5)^{2} = x^{2} - 10x + 25 \] \[ (y-4)^{2} = y^{2} - 8y + 16 \] Now, combine these expansions: \[ x^{2} - 10x + 25 + y^{2} - 8y + 16 = 36 \] Next, combine all the terms together: \[ x^{2} + y^{2} - 10x - 8y + 41 = 36 \] Finally, to bring it to general form, move the constant from the right side to the left side: \[ x^{2} + y^{2} - 10x - 8y + 5 = 0 \] And there you have it! The equation in general form is: \[ x^{2} + y^{2} - 10x - 8y + 5 = 0 \]