Pregunta
upstudy study bank question image url

2 Multiple Choice 10 points A rabbit population doubles every 4 weeks. There are currently five rabbits in a restricted area. If \( t \) represents the time, in weeks, and \( P(t) \) is the population of rabbits with respect to time, and how many rabbits will there be in 98 days? 152 81,920 3,688 56

Ask by Wells Deleon. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

After 98 days, there will be approximately 56 rabbits.

Solución

To find the population of rabbits after 98 days, we first need to determine the population function \( P(t) \) based on the given information. Given: - The rabbit population doubles every 4 weeks. - There are currently 5 rabbits in the restricted area. Since the population doubles every 4 weeks, we can express the population function as: \[ P(t) = 5 \times 2^{\frac{t}{4}} \] Now, we need to find the population after 98 days. First, we need to convert 98 days to weeks: \[ 98 \text{ days} = \frac{98}{7} \text{ weeks} \] Substitute the value of \( t \) into the population function: \[ P\left(\frac{98}{7}\right) = 5 \times 2^{\frac{98}{7} \div 4} \] Now, we can calculate the population after 98 days. Calculate the value by following steps: - step0: Calculate: \(5\times 2^{\frac{\frac{98}{7}}{4}}\) - step1: Divide the terms: \(5\times 2^{\frac{14}{4}}\) - step2: Reduce the fraction: \(5\times 2^{\frac{7}{2}}\) - step3: Rewrite the expression: \(5\times 8\sqrt{2}\) - step4: Expand the expression: \(40\sqrt{2}\) The population of rabbits after 98 days will be approximately 56.57 rabbits. Therefore, the correct answer is 56.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

In the current scenario, it’s important to convert time correctly: 98 days equals about 14 weeks (since 98 divided by 7 gives you 14). Given that the rabbit population doubles every 4 weeks, you can calculate how many times the population will double in 14 weeks. That’s \( 14 \div 4 = 3.5 \), but since you can’t double halfway, you'll consider 3 complete cycles. Starting with 5 rabbits, after 4 weeks (1st doubling), there will be 10; after 8 weeks (2nd doubling), there will be 20; and after 12 weeks (3rd doubling), there will be 40 rabbits. From week 12 to week 14, the population won’t double again, but will still grow. The final population can be calculated as increasing weight till it reaches 56 rabbits. So, the answer is \( 56 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad