Pregunta
upstudy study bank question image url

Use \( f(x)=\frac{x}{x+1} \) and \( g(x)=3 x^{2}-2 \) to find and simplify \( (g \circ f)(x) \) \( (g \circ f)(x)=\frac{x^{2}-4 x-2}{x^{2}+2 x+1} \) \( (g \circ f)(x)=\frac{x-2}{x+1} \) \( (g \circ f)(x)=\frac{3 x^{2}-2}{3 x^{2}-1} \) \( (g \circ f)(x)=\frac{-4 x-2}{2 x+1} \)

Ask by Bright Schwartz. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( (g \circ f)(x) = \frac{x^2 - 4x - 2}{(x+1)^2} \)

Solución

To find and simplify \( (g \circ f)(x) \), we need to compute \( g(f(x)) \). 1. **Identify the functions:** - \( f(x) = \frac{x}{x+1} \) - \( g(x) = 3x^2 - 2 \) 2. **Substitute \( f(x) \) into \( g(x) \):** \[ g(f(x)) = g\left(\frac{x}{x+1}\right) = 3\left(\frac{x}{x+1}\right)^2 - 2 \] 3. **Calculate \( \left(\frac{x}{x+1}\right)^2 \):** \[ \left(\frac{x}{x+1}\right)^2 = \frac{x^2}{(x+1)^2} = \frac{x^2}{x^2 + 2x + 1} \] 4. **Substitute this back into \( g(f(x)) \):** \[ g(f(x)) = 3\left(\frac{x^2}{x^2 + 2x + 1}\right) - 2 \] 5. **Combine the terms:** \[ g(f(x)) = \frac{3x^2}{x^2 + 2x + 1} - 2 = \frac{3x^2 - 2(x^2 + 2x + 1)}{x^2 + 2x + 1} \] 6. **Distribute the -2:** \[ g(f(x)) = \frac{3x^2 - 2x^2 - 4x - 2}{x^2 + 2x + 1} = \frac{x^2 - 4x - 2}{x^2 + 2x + 1} \] Now we have \( (g \circ f)(x) = \frac{x^2 - 4x - 2}{x^2 + 2x + 1} \). Next, let's check if this can be simplified further. 7. **Factor the numerator and denominator if possible:** - The numerator \( x^2 - 4x - 2 \) does not factor nicely. - The denominator \( x^2 + 2x + 1 = (x+1)^2 \). Thus, the simplified form of \( (g \circ f)(x) \) is: \[ (g \circ f)(x) = \frac{x^2 - 4x - 2}{(x+1)^2} \] Now, let's check the provided options: - \( (g \circ f)(x) = \frac{x^2 - 4x - 2}{x^2 + 2x + 1} \) is correct. - The other options do not match this result. Therefore, the final answer is: \[ (g \circ f)(x) = \frac{x^2 - 4x - 2}{(x+1)^2} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find and simplify \( (g \circ f)(x) \), we need to substitute \( f(x) \) into \( g(x) \). Start with \( f(x) = \frac{x}{x+1} \). Now let's calculate \( g(f(x)) \): \[ g(f(x)) = g\left(\frac{x}{x+1}\right) = 3\left(\frac{x}{x+1}\right)^{2} - 2 \] Calculating \( \left(\frac{x}{x+1}\right)^{2} \): \[ \left(\frac{x}{x+1}\right)^{2} = \frac{x^{2}}{(x+1)^{2}} = \frac{x^{2}}{x^{2}+2x+1} \] Substituting this back into \( g(f(x)) \): \[ g(f(x)) = 3 \cdot \frac{x^{2}}{x^{2}+2x+1} - 2 \] Now, write 2 as a fraction with the same denominator: \[ g(f(x)) = \frac{3x^{2}}{x^{2}+2x+1} - \frac{2(x^{2}+2x+1)}{x^{2}+2x+1} \] \[ = \frac{3x^{2} - (2x^{2} + 4x + 2)}{x^{2}+2x+1} \] \[ = \frac{3x^{2} - 2x^{2} - 4x - 2}{x^{2}+2x+1} \] \[ = \frac{x^{2} - 4x - 2}{x^{2}+2x+1} \] So, the simplified result is: \[ (g \circ f)(x) = \frac{x^{2}-4x-2}{x^{2}+2x+1} \] And here’s some fun information as a cherry on top! Communication through mathematics has been a historical marvel! From ancient Babylonians who have used sophisticated algorithms to the rise of algebra in the Islamic Golden Age, mathematics forms the bedrock of countless scientific discoveries that shape our world today. It's no wonder we still marvel at functions like \( f(x) \) and \( g(x) \) that continue this legacy! Mind the common slip-ups when working with composite functions! Often, people rush through substitution or forget to handle their algebra with care. Always double-check your calculations and be cautious with the signs, especially when you’re combining terms. Taking a moment to verify can save you a lot of headaches down the line. Happy calculating!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad