Pregunta
Find the solution to the following equation. \( 3^{2 x}=9^{3-x} \) \( x=\frac{2}{3} \) \( x=\frac{9}{5} \) \( x=\frac{3}{2} \)
Ask by Griffiths Burgess. in the United States
Jan 26,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( x = \frac{3}{2} \)
Solución
To solve the equation:
\[
3^{2x} = 9^{3 - x}
\]
**Step 1: Express Both Sides with the Same Base**
Notice that \(9\) can be expressed as \(3^2\). Therefore:
\[
9^{3 - x} = (3^2)^{3 - x} = 3^{2(3 - x)} = 3^{6 - 2x}
\]
Now the equation becomes:
\[
3^{2x} = 3^{6 - 2x}
\]
**Step 2: Set the Exponents Equal**
Since the bases are the same and the equation holds true, the exponents must be equal:
\[
2x = 6 - 2x
\]
**Step 3: Solve for \(x\)**
\[
2x + 2x = 6
\]
\[
4x = 6
\]
\[
x = \frac{6}{4} = \frac{3}{2}
\]
**Conclusion**
The solution to the equation is:
\[
x = \frac{3}{2}
\]
Among the provided options:
- \( x = \frac{2}{3} \)
- \( x = \frac{9}{5} \)
- \( x = \frac{3}{2} \)
**The correct solution is \( x = \frac{3}{2} \).**
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Mind Expander
To solve the equation \( 3^{2x} = 9^{3-x} \), we can rewrite \( 9 \) as \( 3^2 \). Thus, \( 9^{3-x} \) becomes \( (3^2)^{3-x} = 3^{2(3-x)} = 3^{6 - 2x} \). Now, we have the equation: \[ 3^{2x} = 3^{6 - 2x} \] Since the bases are the same, we can equate the exponents: \[ 2x = 6 - 2x \] Solving for \( x \), we add \( 2x \) to both sides: \[ 2x + 2x = 6 \] \[ 4x = 6 \] Dividing by 4 gives: \[ x = \frac{6}{4} = \frac{3}{2} \] Thus, the solution to the equation is \( x = \frac{3}{2} \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium