Consider the following reaction at \( 1000^{\circ} \mathrm{C} \) and 1 atm : \( \mathrm{FeO}(\mathrm{s})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{Fe}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) ; \Delta \mathrm{G}^{0}=12761.2-7.03 \mathrm{~T} / \mathrm{mol} \). The equilibrium partial pressure of hydrogen gas is ___ atm (round off to two decimal plac
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To find the equilibrium partial pressure of hydrogen gas (\( P_{\text{H}_2} \)) at \( 1000^{\circ} \mathrm{C} \), we can start by using the given Gibbs free energy equation. The standard Gibbs free energy change at equilibrium \( (\Delta G^{0}) \) is related to the equilibrium constant \( K \) by the equation: \[ \Delta G^{0} = -RT \ln K \] Given the reaction: \[ \mathrm{FeO}(\mathrm{s}) + \mathrm{H}_{2}(\mathrm{g}) \rightarrow \mathrm{Fe}(\mathrm{s}) + \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \] At equilibrium, we write the expression for \( K \): \[ K = \frac{P_{H_2O}}{P_{H_2}} \] To find \( \Delta G^{0} \) at \( 1000^{\circ} \mathrm{C} \) (or \( 1273 \, \mathrm{K} \)), substitute \( T = 1273 \, \mathrm{K} \) into the provided equation: \[ \Delta G^{0} = 12761.2 - 7.03 \times 1273 \] Calculating the second term: \[ 7.03 \times 1273 = 8942.39 \] Thus: \[ \Delta G^{0} = 12761.2 - 8942.39 = 3818.81 \, \mathrm{J/mol} \] Now, using \( R = 8.314 \, \mathrm{J/(mol \cdot K)} \): \[ \Delta G^{0} = -RT \ln K \Rightarrow 3818.81 = -8.314 \times 1273 \ln K \] Now calculating \( -RT \): \[ -RT = -8.314 \times 1273 = -10556.562 \] So, \[ 3818.81 = 10556.562 \ln K \Rightarrow \ln K = \frac{3818.81}{10556.562} \approx 0.361 \] Taking the antilogarithm: \[ K = e^{0.361} \approx 1.435 \] Now substituting back into the equilibrium constant expression: \[ K = \frac{P_{H_2O}}{P_{H_2}} \Rightarrow K \cdot P_{H_2} = P_{H_2O} \] Assuming \( P_{H_2O} \) is approximately equal to 1 atm due to water being in the gaseous phase at this high temperature: \[ 1.435 \cdot P_{H_2} = 1 \] Thus, \[ P_{H_2} \approx \frac{1}{1.435} \approx 0.696 \, \text{atm} \] Rounding to two decimal places, the equilibrium partial pressure of hydrogen gas is approximately: **0.70 atm**