5. Mean \( =95 ; \) Standard Deviation \( =12 \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
Did you know that the mean and standard deviation can help paint a picture of data distribution in statistics? The mean, or average, gives you a central value, while the standard deviation measures how spread out the values are from that mean. In this case, with a mean of 95 and a standard deviation of 12, most of your data points would fall within 71 and 119, giving you a clear view of where most values lie! If you're looking at a dataset where these statistics apply, keep in mind that outliers can significantly skew your mean, making the standard deviation an essential tool for understanding the true nature of the data. A common mistake is glossing over these values without analyzing how they relate—always visualize your data for better insights!