Pregunta
upstudy study bank question image url

\( 1.2 \sin \left(x-\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}(\sin x-\cos x) \) \( 1.3 \cdot \cos (x+y) \cos (x-y)=(\cos x \cos y)^{2}-(\sin x \sin y)^{2} \) \( 1.4 \frac{\cot x-\tan x}{\cot ^{2} x-\tan ^{2} x}=\frac{1}{2} \sin 2 x \) 4 QuESTIOW 2 2. Prove that \( \sin 61^{\circ}+\sin 29^{\circ}=\sqrt{2} \cos 16^{\circ} \). QuたSTHON3 3. If \( \tan x=-\frac{1}{2} \) and \( \tan y=-\frac{1}{3} \) with both \( x \) and \( y \) in the second quadrant, calculate the value of \( \cos (x+y) \). A calculator may not be used. \[ \text { QuझSTIow } 4 \] Solve for \( x \) if: \[ \operatorname{cosec} x+\cot x=\sqrt{3} ; 0^{\circ} \leq x \leq 360^{\circ} \] (6) (4)

Ask by John Franklin. in South Africa
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Here are the simplified solutions: 1. **First Equation**: \[ x = \frac{\pi}{4} + k\pi \quad \text{for any integer } k \] 2. **Second Equation**: Requires further analysis as it timed out during calculation. 3. **Third Equation**: \[ x \neq \frac{k\pi}{4} \quad \text{for any integer } k \] 4. **Fourth Equation**: Requires further analysis as it timed out during calculation. 5. **Second Question**: \[ x = \arctan\left(-\frac{1}{2}\right) + k\pi \quad \text{and} \quad y = \arctan\left(-\frac{1}{3}\right) + k\pi \quad \text{for any integer } k \] 6. **Third Question**: \[ x = \frac{\pi}{3} + 2k\pi \quad \text{and} \quad x = \frac{5\pi}{3} + 2k\pi \quad \text{for any integer } k \] If you need more detailed steps or assistance with the equations that timed out, feel free to ask!

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Mind Expander

One of the most fascinating aspects of trigonometry is its deep historical roots. The ancient Greeks were the first to study ratios of angles for navigation and astronomy. They developed functions that we now recognize as sine, cosine, and tangent, laying the groundwork for not just mathematics but also philosophy and science. Figures like Hipparchus and Ptolemy had astronomical tables based on these functions, essentially creating the first trigonometric charts! When it comes to real-world applications, trigonometry is key in fields ranging from engineering to music. Engineers use it to design structures like bridges and buildings, ensuring they can withstand various forces. In music, sine waves are foundational in understanding sound frequencies, and that's why your favorite tunes use trigonometric principles! Whether it’s analyzing sound waves or designing a roller coaster, trigonometry is everywhere, making the world around us not just functional but also fascinating!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad