Pregunta
upstudy study bank question image url

A bag contains 3 blue marbles, 3 red marbles, and 4 yellow marbles. The probability of drawing a blue marble out of the bag is \( \frac{3}{10} \) or \( 30 \% \). How many of what color of marbles must be added to the bag so that the probability of a blue marble being drawn at random from the bag is \( 75 \% \) ? Select the correct answer below and fill in the answer box within your choice. (Type a whole number.) A. There must be \( \square \) red marbles added to the bag. B. There must be 18 blue marbles added to the bag. C. There must be \( \square \) yellow marbles added to the bag.

Ask by Owen Kirk. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

You need to add 18 blue marbles to the bag to have a 75% chance of drawing a blue marble.

Solución

To achieve a \( 75\% \) probability of drawing a blue marble from the bag, we need to determine how many additional blue marbles must be added. **Initial Setup:** - Blue marbles: 3 - Red marbles: 3 - Yellow marbles: 4 - **Total marbles initially:** \( 3 + 3 + 4 = 10 \) **Desired Probability:** \[ \frac{\text{Number of Blue Marbles}}{\text{Total Number of Marbles}} = 75\% = \frac{3}{4} \] Let \( x \) be the number of blue marbles to add. The new total number of marbles will be \( 10 + x \), and the new number of blue marbles will be \( 3 + x \). Set up the equation: \[ \frac{3 + x}{10 + x} = \frac{3}{4} \] Cross-multiply to solve for \( x \): \[ 4(3 + x) = 3(10 + x) \] \[ 12 + 4x = 30 + 3x \] \[ 4x - 3x = 30 - 12 \] \[ x = 18 \] **Conclusion:** You need to add **18 blue marbles** to the bag to achieve the desired probability of \( 75\% \). **Answer:** **B. There must be 18 blue marbles added to the bag.**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To achieve a 75% probability of drawing a blue marble, we need to set up the equation considering the total number of marbles in the bag after adding new marbles. Currently, there are 10 marbles in total (3 blue, 3 red, and 4 yellow). Let \( x \) be the number of red marbles added. Then the total number of marbles will become \( 10 + x \), and the number of blue marbles remains at 3. We want: \[ \frac{3}{10 + x} = 0.75 \] Cross-multiplying gives: \[ 3 = 0.75(10 + x) \] Solving this equation will show how many red marbles need to be added to reach the desired probability. However, just by inspecting the options, we can determine that to reach a total of 75% blue marbles, we should keep adding until 3 is 75% of the total, which leads to needing 9 more marbles of any color (preferably non-blue). Now for the fun part: Imagine if you suddenly found a treasure chest filled with marbles! You could either go with adding those 18 blue marbles (which would look pretty cool) or adding a mix of colors to make your bag even more dazzling. Perhaps you opt to strategize your collection wisely, adding a blend of red or yellow marbles!

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad