Pregunta
upstudy study bank question image url

In the following exercise, you will be given the opportunity to recall what happens when you add two linear functions. Given: \( f(x)=2 x+3, g(x)=x+2 \), \( h(x)=x-5, m(x)=-3 x-1 \) 2. \( q(x)=g(x)+h(x) \) a. Write the equation of \( q(x) \). b. In what way is the slope of \( q(x) \) related to the slope of \( g(x) \) and the slope of \( h(x) \) ? (Include increasing or decreasing in your answer. Also identify which function is increasing faster.) c. In what way is the \( y \)-intercept of \( q(x) \) related to the \( y \)-intercepts of \( g(x) \) and of \( h(x) \) ? d. Is \( q(x) \) the equation of a line? Justify your answer.

Ask by Blake Cervantes. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

a. \( q(x) = 2x - 3 \) b. The slope of \( q(x) \) is the sum of the slopes of \( g(x) \) and \( h(x) \). Both \( g(x) \) and \( h(x) \) are increasing, and \( q(x) \) is increasing faster. c. The \( y \)-intercept of \( q(x) \) is the sum of the \( y \)-intercepts of \( g(x) \) and \( h(x) \), which is –3. d. Yes, \( q(x) \) is a line because it is in the form \( y = mx + b \).

Solución

Let's work through each part of the exercise step by step. --- ### **Given Functions:** - \( f(x) = 2x + 3 \) - \( g(x) = x + 2 \) - \( h(x) = x - 5 \) - \( m(x) = -3x - 1 \) ### **Question 2:** **Given:** \( q(x) = g(x) + h(x) \) --- #### **a. Write the equation of \( q(x) \).** To find \( q(x) \), add the functions \( g(x) \) and \( h(x) \): \[ \begin{align*} q(x) &= g(x) + h(x) \\ &= (x + 2) + (x - 5) \\ &= x + x + 2 - 5 \\ &= 2x - 3 \end{align*} \] **Answer:** \[ q(x) = 2x - 3 \] --- #### **b. In what way is the slope of \( q(x) \) related to the slope of \( g(x) \) and the slope of \( h(x) \)? (Include increasing or decreasing in your answer. Also identify which function is increasing faster.)** **Slopes of the Given Functions:** - Slope of \( g(x) \) (\( m_g \)) = 1 - Slope of \( h(x) \) (\( m_h \)) = 1 - Slope of \( q(x) \) (\( m_q \)) = 2 **Analysis:** - Both \( g(x) \) and \( h(x) \) have positive slopes (\( m_g = 1 \) and \( m_h = 1 \)), which means both functions are **increasing**. - The slope of \( q(x) \) is the sum of the slopes of \( g(x) \) and \( h(x) \): \( m_q = m_g + m_h = 1 + 1 = 2 \). - Since \( m_q = 2 \) is greater than both \( m_g \) and \( m_h \), \( q(x) \) is increasing **faster** than both \( g(x) \) and \( h(x) \). **Answer:** The slope of \( q(x) \) is the sum of the slopes of \( g(x) \) and \( h(x) \). Both \( g(x) \) and \( h(x) \) have a slope of 1 and are increasing. Therefore, \( q(x) \) has a slope of 2 and is increasing faster than both \( g(x) \) and \( h(x) \). --- #### **c. In what way is the \( y \)-intercept of \( q(x) \) related to the \( y \)-intercepts of \( g(x) \) and of \( h(x) \)?** **Y-Intercepts of the Given Functions:** - Y-intercept of \( g(x) \) = 2 - Y-intercept of \( h(x) \) = -5 **Analysis:** - The \( y \)-intercept of \( q(x) \) is the sum of the \( y \)-intercepts of \( g(x) \) and \( h(x) \): \[ \text{Y-intercept of } q(x) = 2 + (-5) = -3 \] **Answer:** The \( y \)-intercept of \( q(x) \) is the sum of the \( y \)-intercepts of \( g(x) \) and \( h(x) \). Specifically, \( q(x) \) has a \( y \)-intercept of –3. --- #### **d. Is \( q(x) \) the equation of a line? Justify your answer.** **Analysis:** - A linear equation is generally in the form \( y = mx + b \), where \( m \) is the slope and \( b \) is the \( y \)-intercept. - \( q(x) = 2x - 3 \) fits this form with \( m = 2 \) and \( b = -3 \). **Answer:** Yes, \( q(x) \) is the equation of a line because it is in the standard linear form \( y = mx + b \), where \( m = 2 \) is the slope and \( b = -3 \) is the \( y \)-intercept. ---

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the equation of \( q(x) \), simply add the two linear functions together. So, \( q(x) = g(x) + h(x) = (x + 2) + (x - 5) = 2x - 3 \). Regarding the slope, \( g(x) \) has a slope of 1 (increasing), while \( h(x) \) has a slope of 1 (increasing). Therefore, the slope of \( q(x) \) is the sum of the slopes of both functions: 1 + 1 = 2, which means \( q(x) \) is increasing faster than either \( g(x) \) or \( h(x) \). The \( y \)-intercept of \( q(x) \) can be found directly from the equation \( q(x) = 2x - 3 \), which is -3. The \( y \)-intercepts of \( g(x) \) and \( h(x) \) are 2 and -5, respectively. For \( q(x) \), the \( y \)-intercept is the sum of the \( y \)-intercepts of \( g(x) \) and \( h(x) \): 2 + (-5) = -3. Yes, \( q(x) \) is the equation of a line. It represents a linear function because its equation is in the form \( y = mx + b \), where \( m \) is the slope (2) and \( b \) is the \( y \)-intercept (-3). Linear functions are always graphed as straight lines, so you can count on \( q(x) \) being one too!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad