Pregunta
upstudy study bank question image url

In the following exercise, you will be given the opportunity
to recall what happens when you add two linear functions.
Given: ,

2.
a. Write the equation of .
b. In what way is the slope of related to
the slope of and the slope of ?
(Include increasing or decreasing in your
answer. Also identify which function is
increasing faster.)
c. In what way is the -intercept of related
to the -intercepts of and of ?
d. Is the equation of a line? Justify your
answer.

Ask by Blake Cervantes. in the United States
Jan 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

a.
b. The slope of is the sum of the slopes of and . Both and are increasing, and is increasing faster.
c. The -intercept of is the sum of the -intercepts of and , which is –3.
d. Yes, is a line because it is in the form .

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Mind Expander

To find the equation of , simply add the two linear functions together. So,
.
Regarding the slope, has a slope of 1 (increasing), while has a slope of 1 (increasing). Therefore, the slope of is the sum of the slopes of both functions: 1 + 1 = 2, which means is increasing faster than either or .
The -intercept of can be found directly from the equation , which is -3. The -intercepts of and are 2 and -5, respectively. For , the -intercept is the sum of the -intercepts of and : 2 + (-5) = -3.
Yes, is the equation of a line. It represents a linear function because its equation is in the form , where is the slope (2) and is the -intercept (-3). Linear functions are always graphed as straight lines, so you can count on being one too!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad