he revenue (in thousands of dollars) from producing \( x \) units of an item is nodeled by \( R(x)=14 x-0.001 x^{2} \). b. Find the marginal revenue at \( x=10,000 \).
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To find the marginal revenue at \( x = 10,000 \), we first need to determine the derivative of the revenue function \( R(x) = 14x - 0.001x^2 \). The derivative, \( R'(x) \), represents the marginal revenue: \[ R'(x) = 14 - 0.002x \] Now, we can calculate the marginal revenue at \( x = 10,000 \): \[ R'(10,000) = 14 - 0.002(10,000) = 14 - 20 = -6 \] Thus, the marginal revenue at \( x = 10,000 \) is \(-6\) thousand dollars, indicating that producing an additional unit beyond 10,000 will decrease revenue by $6,000. Remember, negative marginal revenue often suggests that production levels are beyond the profit-maximizing point, encouraging consideration of reducing output.