Pregunta
upstudy study bank question image url

Solve and graph the solution. \[ |x| \leq 9 \]

Ask by Coles Guzman. in the United States
Jan 29,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solution to \( |x| \leq 9 \) is all real numbers \( x \) such that \( -9 \leq x \leq 9 \). On a number line, this is represented by shading from -9 to 9, including both endpoints.

Solución

To solve and graph the inequality \( |x| \leq 9 \), let's follow these steps: ### **1. Understanding the Absolute Value Inequality** The inequality \( |x| \leq 9 \) represents all real numbers \( x \) whose distance from 0 on the number line is **less than or equal to** 9. ### **2. Solving the Inequality** The absolute value inequality \( |x| \leq 9 \) can be rewritten without the absolute value as a compound inequality: \[ -9 \leq x \leq 9 \] **Explanation:** - \( |x| \leq 9 \) means that \( x \) is at most 9 units away from 0 in either direction on the number line. - Therefore, \( x \) can range from -9 to 9, inclusive. ### **3. Graphing the Solution** To graph the solution \( -9 \leq x \leq 9 \) on a number line: 1. **Draw a horizontal line** to represent the number line. 2. **Mark the points** at -9 and 9 on the number line. 3. **Shade the region** between -9 and 9 to indicate all the possible values of \( x \) that satisfy the inequality. 4. **Use closed circles** (●) at -9 and 9 to show that these endpoints are included in the solution (since the inequality is "less than or *equal to*"). Here's a visual representation: ``` <-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----> -12 -9 -6 -3 0 3 6 9 12 ●-----------------------------● ``` - The **solid circles** at -9 and 9 indicate that these values are included. - The **shaded line** between -9 and 9 represents all real numbers \( x \) such that \( -9 \leq x \leq 9 \). ### **4. Interval Notation** The solution can also be expressed in interval notation as: \[ [-9, \, 9] \] ### **Summary** - **Solution:** All real numbers \( x \) such that \( -9 \leq x \leq 9 \). - **Graph:** A number line with a shaded segment from -9 to 9, including the endpoints. --- **Visual Graph:** ``` Number Line: <-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----> -12 -9 -6 -3 0 3 6 9 12 Shaded Interval: ●=============================● -9 9 ``` - **●** represents a closed circle (endpoint included). - **=============================** represents the shaded region indicating all values between -9 and 9 are solutions.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve the inequality \( |x| \leq 9 \), we can break it down into two parts. The inequality means that \( x \) can be between -9 and 9, inclusive. Therefore, the solution is \(-9 \leq x \leq 9\). To graph the solution, draw a number line and mark the points -9 and 9. Since the inequality includes the equal sign (≤), shade the entire region between these two points, making sure to include closed circles at -9 and 9 to indicate these values are part of the solution set. Now, you've got a nice interval from -9 to 9 that captures all the values \( x \) can take!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad