Pregunta
A television set that previously sold for \( \$ 431.99 \) has been reduced to \( \$ 360.00 \). What is the markdown percent? (Round to the nearest whole percent) Select one: a. \( 15 \% \) b. \( 17 \% \) c. \( 10 \% \) d. \( 5 \% \)
Ask by Brewer Ortiz. in the United States
Jan 24,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The markdown percent is 17%.
Solución
To determine the markdown percentage, you can use the following formula:
\[
\text{Markdown Percent} = \left( \frac{\text{Original Price} - \text{New Price}}{\text{Original Price}} \right) \times 100\%
\]
Plugging in the values:
\[
\text{Markdown Percent} = \left( \frac{431.99 - 360.00}{431.99} \right) \times 100\% = \left( \frac{71.99}{431.99} \right) \times 100\%
\]
\[
\text{Markdown Percent} \approx 0.1666 \times 100\% = 16.66\%
\]
Rounded to the nearest whole percent, the markdown is **17%**.
**Answer:**
**b. \( \mathbf{17 \%} \)**
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
To find the markdown percent, first calculate the amount of the markdown: \[ \text{Markdown Amount} = \text{Original Price} - \text{Sale Price} = 431.99 - 360.00 = 71.99 \] Next, divide the markdown amount by the original price and then multiply by 100 to get the percentage: \[ \text{Markdown Percent} = \left( \frac{71.99}{431.99} \right) \times 100 \approx 16.65\% \] Rounding to the nearest whole percent gives approximately \( 17\% \). So the correct answer is: b. \( 17\% \)
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium