Pregunta
Consider the following function. Use a graphing utility to confirm your answers for parts (a) through ©. (If an answer does not exist, enter
DNE.)
(a) Find the critical numbers of
. (Enter your answers as a comma-separated list.)
(b) Find the open intervals on which the function is increasing or decreasing. (Enter your answers using interval notation.)
increasing
decreasing
© Apply the First Derivative Test to identify all relative extrema.
relative maximum
DNE.)
increasing
decreasing
© Apply the First Derivative Test to identify all relative extrema.
relative maximum
Ask by Cox Sullivan. in the United States
Mar 31,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
(a) Critical numbers:
(b) Increasing:
Decreasing:
Decreasing:
© Relative maximum:
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Como
The Deep Dive
To tackle this function
, let’s take a fun trip through calculus!
First up, let’s find the critical numbers by taking the derivative:
The first derivative of is:
The first derivative of
Set the derivative to zero to find critical points:
This gives
, leading to
. Thus,
.
Now for parts (b) and ©:
For part (b), we determine where
is positive or negative. Analyze
:
-
when (function is increasing) -
when (function is decreasing)
Finally, we apply the First Derivative Test for part ©:
- At
: transitioning from increasing to decreasing indicates a relative maximum. - At
: transitioning from decreasing to increasing indicates a relative minimum.
Calculate the corresponding
values:
-
gives a relative maximum -
gives a relative minimum
Summarizing:
(a)
(b) increasing: , decreasing:
© relative maximum , relative minimum
(a)
(b) increasing:
© relative maximum

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium