Pregunta
Enter an exact number: \( 8 r^{4} s^{4}-3 r^{4} s^{5} \)
Ask by Hobbs Davey. in the United States
Jan 24,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The expression simplifies to \( r^{4}s^{4}(8 - 3s) \).
Solución
The expression you've provided is:
\[ 8r^{4}s^{4} - 3r^{4}s^{5} \]
To determine an exact number from this expression, specific values for the variables \( r \) and \( s \) are required. Without assigning particular numbers to \( r \) and \( s \), the expression remains algebraic and cannot be simplified to a single numerical value.
**However, if you wish to simplify the expression by factoring, here's how you can do it:**
1. **Identify the Greatest Common Factor (GCF):**
- Both terms share \( r^{4}s^{4} \) as a common factor.
2. **Factor out the GCF:**
\[ 8r^{4}s^{4} - 3r^{4}s^{5} = r^{4}s^{4}(8 - 3s) \]
So, the factored form of the expression is:
\[ r^{4}s^{4}(8 - 3s) \]
**If you provide specific values for \( r \) and \( s \), I can help you compute the exact numerical value of the expression.**
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
To simplify the expression \( 8 r^{4} s^{4}-3 r^{4} s^{5} \), we can factor out the common term. Here, both terms have a common factor of \( r^{4} s^{4} \). Starting with the expression: \[ 8 r^{4} s^{4}-3 r^{4} s^{5} \] We factor out \( r^{4} s^{4} \): \[ = r^{4} s^{4} (8 - 3s) \] Thus, the simplified form of the expression is \( r^{4} s^{4} (8 - 3s) \). This is your exact answer!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium