Pregunta
upstudy study bank question image url

If \( \$ 450 \) are deposited into an account with a \( 8.5 \% \) interest rate, compounded annually, what is the balance after 9 years? \[ F=\$[?] \] \( F=P\left(1+\frac{r}{n}\right)^{n t} \)

Ask by Davison Lambert. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The balance after 9 years is approximately $937.74.

Solución

To find the balance after 9 years, we can use the formula for compound interest: \[ F = P\left(1 + \frac{r}{n}\right)^{nt} \] Given: - Principal amount (\( P \)) = $450 - Interest rate (\( r \)) = 8.5% = 0.085 - Compounding frequency (\( n \)) = 1 (compounded annually) - Time (\( t \)) = 9 years Substitute the given values into the formula: \[ F = 450\left(1 + \frac{0.085}{1}\right)^{1 \times 9} \] Now, we can calculate the balance after 9 years. Calculate the value by following steps: - step0: Calculate: \(450\left(1+0.085\right)^{9}\) - step1: Add the numbers: \(450\times 1.085^{9}\) - step2: Convert the expressions: \(450\left(\frac{217}{200}\right)^{9}\) - step3: Simplify: \(450\times \frac{217^{9}}{200^{9}}\) - step4: Rewrite the expression: \(50\times 9\times \frac{217^{9}}{200^{9}}\) - step5: Rewrite the expression: \(50\times 9\times \frac{217^{9}}{50^{9}\times 4^{9}}\) - step6: Reduce the numbers: \(9\times \frac{217^{9}}{50^{8}\times 4^{9}}\) - step7: Multiply the fractions: \(\frac{9\times 217^{9}}{50^{8}\times 4^{9}}\) The balance after 9 years is approximately $937.74.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the future balance \( F \) after 9 years, you'll use the formula \( F = P\left(1+\frac{r}{n}\right)^{nt} \). Here, \( P = 450 \), \( r = 0.085 \), \( n = 1 \) (since it's compounded annually), and \( t = 9 \). Plugging in the numbers gives: \[ F = 450 \left(1 + \frac{0.085}{1}\right)^{1 \cdot 9} = 450 \left(1 + 0.085\right)^{9} = 450 \left(1.085\right)^{9} \approx 450 \cdot 2.049 = 922.05 \] So the balance after 9 years is approximately \( F \approx \$922.05 \). One fun fact is that compounding interest can really turbocharge your savings! In real life, you might want to get comfortable with tools like online calculators or banking apps. These can help you track your savings growth over time without doing all the math yourself. It’s like having a personal money coach at your fingertips! If you're keen on understanding how compound interest works over different periods or with various rates, there are plenty of resources out there. A classic recommendation is "The Wealthy Gardener" by John Soforic. It’s not just about compound interest; it covers overall financial wisdom and how to cultivate a rich life—both financially and personally!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad