Pregunta
upstudy study bank question image url

You purchase a new house for \( \$ 240,000 \) today. If you live in that house for 25 years before selling it, assuming an inflation rate of \( 5 \% \), compounded continuously, what would be the value of the home when you decide to sell it?

Ask by Fleming Stewart. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The house will be worth approximately \$837,682.31 after 25 years.

Solución

To find the value of the house after 25 years with an inflation rate of 5% compounded continuously, we can use the formula for continuous compounding: \[ A = P e^{rt} \] Where: - \( A \) is the amount after \( t \) years, - \( P \) is the principal amount (initial amount), - \( r \) is the annual inflation rate, - \( t \) is the time in years. Given: - Initial amount (P) = $240,000 - Inflation rate (r) = 5% = 0.05 - Time (t) = 25 years Substitute the values into the formula: \[ A = 240,000 \times e^{0.05 \times 25} \] Now, we can calculate the value of the house after 25 years. Calculate the value by following steps: - step0: Calculate: \(240000e^{0.05\times 25}\) - step1: Multiply the numbers: \(240000e^{1.25}\) - step2: Convert the expressions: \(240000e^{\frac{5}{4}}\) The value of the house after 25 years with an inflation rate of 5% compounded continuously would be approximately $837,682.31.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the future value of the house after 25 years with continuous compounding at an inflation rate of 5%, you can use the formula for continuous compounding: \[ A = Pe^{rt} \] where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount of money). - \( r \) is the rate of interest (in decimal). - \( t \) is the time the money is invested or borrowed for, in years. - \( e \) is the base of the natural logarithm, approximately equal to 2.71828. Substituting the known values: - \( P = 240,000 \) - \( r = 0.05 \) - \( t = 25 \) So: \[ A = 240,000 e^{(0.05 \times 25)} \] \[ A = 240,000 e^{1.25} \] \[ A \approx 240,000 \times 3.49034 \] \[ A \approx 836,081.41 \] Thus, the value of the home after 25 years would be approximately \( \$ 836,081.41 \). Looking to the past, the concept of continuous compounding has its roots in the work of mathematicians like Jacob Bernoulli and John Napier. The elegance of \( e \) lies not just in finance; it’s also prominent in natural growth processes, from biology to physics! To embrace the art of investing in property, remember that location, market trends, and property maintenance play pivotal roles in increasing your home's value. Do your research and avoid common pitfalls like neglecting regular upkeep or underestimating renovation costs!

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad