The number of bacteria in a refrigerated food product is given by \( N(T)=21 T^{2}-127 T+86 \),
\( 6
Ask by Harrington Gray. in the United States
Feb 03,2025
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find the composite function \( N(T(t)) \), we substitute \( T(t) = 5t + 1.9 \) into the equation \( N(T) = 21T^2 - 127T + 86 \). So, we have: \[ N(T(t)) = N(5t + 1.9) = 21(5t + 1.9)^2 - 127(5t + 1.9) + 86 \] Now, expanding \( (5t + 1.9)^2 \): \[ (5t + 1.9)^2 = 25t^2 + 19t + 3.61 \] Now, substituting that back into \( N \): \[ N(T(t)) = 21(25t^2 + 19t + 3.61) - 127(5t + 1.9) + 86 \] \[ = 525t^2 + 399t + 75.81 - 635t - 241.3 + 86 \] \[ = 525t^2 - 236t - 79.49 \] Thus, the composite function is: \[ N(T(t)) = 525t^2 - 236t - 79.49 \] Next, to find the time when the bacteria count reaches 8570, we set \( N(T(t)) \) equal to 8570: \[ 525t^2 - 236t - 79.49 = 8570 \] \[ 525t^2 - 236t - 8650.49 = 0 \] Now we can use the quadratic formula to solve for \( t \): \[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{236 \pm \sqrt{(-236)^2 - 4(525)(-8650.49)}}{2(525)} \] Calculating the discriminant: \[ (-236)^2 = 56196 \] \[ 4(525)(8650.49) = 18294865.8 \] \[ \sqrt{b^2 - 4ac} \approx \sqrt{56196 + 18294865.8} = \sqrt{18351061.8} \approx 4286.2 \] Plug that back into the quadratic formula: \[ t = \frac{236 \pm 4286.2}{1050} \] Taking the positive root: \[ t \approx \frac{4522.2}{1050} \approx 4.3 \text{ hours} \] Thus, the time when the bacteria count reaches 8570 is approximately: \[ t \approx 4.3 \]