Pregunta
upstudy study bank question image url

After traveling for five hours and 1000 miles, an airplane begins a steady descent. When it begins descending, its altitude is 29,000 feet. After 20 minutes, it is at 9000 feet. The airplane is descending at a rate of Select__ feet per minute. When graphing the descent of the airplane, the starting value would be Select Using the form \( y=m x+b \), the airplane's height can be shown by the function \( y= \)

Ask by Vaughn Bartlett. in the United States
Feb 05,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

- **Descent rate:** 1,000 feet per minute - **Starting value:** 29,000 feet - **Height function:** \( y = -1000x + 29000 \)

Solución

Let's break down the problem step by step to fill in the blanks accurately. ### 1. Calculating the Descent Rate **Given:** - Initial altitude when descent begins: **29,000 feet** - Altitude after 20 minutes: **9,000 feet** - Time taken for the descent: **20 minutes** **Change in Altitude:** \[ 29,000 \text{ feet} - 9,000 \text{ feet} = 20,000 \text{ feet} \] **Descent Rate:** \[ \frac{20,000 \text{ feet}}{20 \text{ minutes}} = 1,000 \text{ feet per minute} \] **Answer:** The airplane is descending at a rate of **1,000 feet per minute**. ### 2. Determining the Starting Value for the Graph When graphing the descent: - **Starting point** refers to the altitude at the beginning of the descent. **Answer:** The starting value would be **29,000 feet**. ### 3. Formulating the Height Function Using the linear equation form \( y = mx + b \): - **\( m \)**: Slope (descent rate) = **-1,000** (negative because the plane is descending) - **\( b \)**: Starting altitude = **29,000** **Function:** \[ y = -1,000x + 29,000 \] **Answer:** The airplane's height can be shown by the function \( y = -1000\,x + 29000 \). ### Complete Answer - **Descent rate:** 1,000 feet per minute - **Starting value:** 29,000 feet - **Height function:** \( y = -1000\,x + 29000 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

The airplane descends from 29,000 feet to 9,000 feet over 20 minutes, a drop of 20,000 feet. To find the rate, you can divide the total descent by the time taken. That's 20,000 feet divided by 20 minutes, giving you a descent rate of 1,000 feet per minute. Who knew soaring through the sky could turn into math fever! When graphing the descent, the starting value on the y-axis is the altitude when the descent begins, which is 29,000 feet. This represents the height of the airplane before it starts its descent - just picture it above the clouds, ready to glide down! Thus, using the slope-intercept form \( y = mx + b \), where \( m \) is the rate of descent and \( b \) is the starting altitude, the equation for the airplane's height during descent can be represented as \( y = -1000x + 29000 \). Here, \( x \) is the time in minutes, and it's suddenly clear that math can really take you places!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad