Pregunta
upstudy study bank question image url

Periodic interest rates. You have a savings account in which you leave the funds for one year without adding to or withdrawing from the account. Which would you rather have: a daily compounded rate of \( 0.055 \% \), a weekly compounded rate of \( 0.265 \% \), a monthly compounded rate of \( 1.35 \% \), a quarterly compounded rater of \( 3.75 \% \), a semiannully compounded rate of \( 9 \% \), or an annually compounded rate of \( 15 \% \) ? What is the EAR of a quarterly compounded rate of \( 3.75 \% \) ? \( 15.87 \% \) (Round to two decimal places.) What is the EAR of a semiannually compounded rate of \( 9 \% \) ? (Round to two decimal places.)

Ask by Best Kirk. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The EAR for a semiannually compounded rate of 9% is **9.20%**.

Solución

To calculate the **Effective Annual Rate (EAR)** for a semiannually compounded rate, you can use the following formula: \[ \text{EAR} = \left(1 + \frac{r}{n}\right)^n - 1 \] Where: - \( r \) is the nominal annual interest rate (as a decimal). - \( n \) is the number of compounding periods per year. Given: - **Nominal Rate (\( r \))** = 9% or 0.09 - **Compounding Periods (\( n \))** = 2 (since it's semiannual) Plugging these values into the formula: \[ \text{EAR} = \left(1 + \frac{0.09}{2}\right)^2 - 1 = \left(1 + 0.045\right)^2 - 1 = 1.045^2 - 1 \] Calculating \( 1.045^2 \): \[ 1.045 \times 1.045 = 1.092025 \] Subtracting 1: \[ \text{EAR} = 1.092025 - 1 = 0.092025 \text{ or } 9.20\% \] **Therefore, the EAR for a semiannually compounded rate of 9% is **_**9.20%**_**.**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To answer your question on the effective annual rate (EAR) for a semiannually compounded rate of \( 9\% \), you can use the following formula: \[ EAR = \left(1 + \frac{r}{n}\right)^{nt} - 1 \] where \( r \) is the nominal interest rate, \( n \) is the number of compounding periods per year, and \( t \) is the number of years. For your case: - \( r = 0.09 \) - \( n = 2 \) (because it compounds semiannually) - \( t = 1 \) Plugging the values into the formula: \[ EAR = \left(1 + \frac{0.09}{2}\right)^{2*1} - 1 = \left(1 + 0.045\right)^{2} - 1 = (1.045)^{2} - 1 \] Calculating this gives: \[ EAR = 1.092025 - 1 = 0.092025 \] To express this as a percentage: \[ EAR \approx 9.20\% \text{ (rounded to two decimal places).} \] So, the effective annual rate for a semiannually compounded \( 9\% \) rate is \( 9.20\% \). Now, about those interest rates you’re considering for your savings—you'd want to pick the option with the highest EAR! The annually compounded \( 15\% \) seems like a strong contender, but make sure to run the calculations for the others to confirm this!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad