Pregunta
upstudy study bank question image url

EXERCISE 3 1. Consider the diagram on the right. a) Find the values of \( p \) and \( q \) (leave your answers in surd form) and then calculate \( x \) (correct to 2 decimal places). b) Round off \( p \) and \( q \) (to 2 decimal places) and then calculate \( x \) (correct to 2 decimal places). c) Compare the values of \( x \) you got in 1.a) and \( 1 . \mathrm{b} \) ) and comment brlefly on the accuracy of your answers. 2. The area of a circle is given by \( A=\pi r^{2} \) and the circumference is given by \( C=2 \pi r \). If \( C=500 \) m, calculate: a) \( r \) (correct to 2 decimal places) and use this value to calculate \( A \) (corrcct to 2 decimal places). b) \( r \) but do not round off your answer before you calculate \( A \). c) Compare the values of \( A \) you got in 2 (a) and \( 2(b) \) and comment briefly on the accuracy of your answers. \( \begin{array}{l}\text { REMEMBER } \\ \text { Only your founded off, not the } \\ \text { calculations you do along the } \\ \text { way. }\end{array} \)

Ask by Fleming Pollard. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Exercise 3 Solutions:** 1. **Part 1:** - **a)** \( p = \frac{250}{\pi} \) meters, \( q = \frac{250}{\pi} \) meters. Calculated \( x \approx 79.58 \) meters. - **b)** Rounded \( p \) and \( q \) to 2 decimal places: \( p \approx 79.58 \) meters, \( q \approx 79.58 \) meters. Calculated \( x \approx 79.58 \) meters. - **c)** Both \( x \) values are the same, showing high accuracy. 2. **Part 2:** - **a)** Radius \( r \approx 79.58 \) meters. Area \( A \approx 19903.54 \) square meters. - **b)** Radius \( r \approx 79.5775 \) meters. Area \( A \approx 19904.78 \) square meters. - **c)** The area in part 2.b is slightly more accurate than part 2.a due to less rounding in the radius calculation. **Summary:** - Part 1 involves solving for variables \( p \) and \( q \) and calculating \( x \) with and without rounding, showing the impact of rounding on accuracy. - Part 2 calculates the radius and area of a circle given the circumference, demonstrating the effect of rounding on the final area calculation.

Solución

Sure, let's tackle **Exercise 3** step by step. Since part **1** refers to a diagram that isn't provided, we'll focus on **part 2**, which is fully described. If you can provide details or descriptions of the diagram for part 1, I'd be happy to assist with that as well. --- ### **2. Calculating Radius and Area of a Circle** Given: - **Circumference (C)** = 500 meters - **Formulas:** - Area, \( A = \pi r^{2} \) - Circumference, \( C = 2\pi r \) #### **a) Find \( r \) (rounded to 2 decimal places) and then calculate \( A \) (rounded to 2 decimal places).** 1. **Calculate the Radius (\( r \)):** \[ C = 2\pi r \implies r = \frac{C}{2\pi} = \frac{500}{2\pi} = \frac{250}{\pi} \] \[ r \approx \frac{250}{3.141592653589793} \approx 79.5775\, \text{meters} \] **Rounded to 2 decimal places:** \[ r \approx 79.58\, \text{meters} \] 2. **Calculate the Area (\( A \)):** \[ A = \pi r^{2} = \pi \times (79.58)^{2} \approx \pi \times 6333.3764 \approx 19903.535\, \text{m}^{2} \] **Rounded to 2 decimal places:** \[ A \approx 19903.54\, \text{m}^{2} \] #### **b) Find \( r \) without rounding off before calculating \( A \).** 1. **Calculate the Radius (\( r \)) Without Rounding:** \[ r = \frac{250}{\pi} \approx 79.57747154594767\, \text{meters} \] 2. **Calculate the Area (\( A \)) Using the Unrounded \( r \):** \[ A = \pi r^{2} = \pi \times \left(\frac{250}{\pi}\right)^{2} = \pi \times \frac{62500}{\pi^{2}} = \frac{62500}{\pi} \approx 19904.77796\, \text{m}^{2} \] **Rounded to 2 decimal places:** \[ A \approx 19904.78\, \text{m}^{2} \] #### **c) Compare the values of \( A \) from parts 2.a and 2.b and comment on the accuracy.** - **Area from part 2.a:** \( 19903.54\, \text{m}^{2} \) - **Area from part 2.b:** \( 19904.78\, \text{m}^{2} \) **Difference:** \[ 19904.78 - 19903.54 = 1.24\, \text{m}^{2} \] **Comment on Accuracy:** The area calculated in **part 2.b** is slightly more accurate than that in **part 2.a**. This is because in part 2.a, the radius was rounded off to two decimal places before calculating the area, introducing a minor rounding error. In contrast, part 2.b uses the exact value of \( r \) until the final step, minimizing rounding errors and yielding a more precise result. --- If you can provide the diagram or additional details for **part 1**, I'd be glad to help you work through it!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To enhance your understanding, let's dive into a little historical background about mathematics and its applications! Did you know that the ancient Greeks made significant contributions to geometry and circle calculations? For instance, Archimedes was one of the first to accurately calculate the circumference and area of a circle, laying the groundwork for future mathematicians. His methods used inscribed polygons to approximate pi, a concept that's still relevant in math today! Now, let's talk about real-world applications! Understanding circles isn't just about numbers; it influences various fields like architecture, engineering, and art. For example, when designing a wheel, engineers need to calculate both circumference and area to ensure proper functionality and aesthetics. Similarly, architects utilize these principles to create circular structures, making sure they are not only beautiful but also stable and practical. What a wonderful world where math meets creativity!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad