Pregunta
upstudy study bank question image url

12:13 5G 12 siyavula.com Siya \( \sqrt{4} / 2 \) The other factor of \( x^{2}+b x+24 \) is: \( x+6 \) \( x-6 \) \( (x+b)+24 \) Impossible to find Exactly right. High five! Show the full solution 2. Consider the same equation: \[ x^{2}+b x+24=0 \] Use your answers to Question 1 to determine: 1. The other solution to the equation. 2. The value of \( b \). 95

Ask by Gibson Bowman. in South Africa
Feb 08,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

1. The other solution to the equation is \( x = -6 \). 2. The value of \( b \) is 10.

Solución

We start with the quadratic:   x² + bx + 24 = 0 Suppose that in Question 1 you found one of the factors to be (x + 4). (This is consistent with the fact that factors of 24 that add up to give b in the factored form are 4 and 6.) To factor the quadratic completely, we need to find the other factor, say (x + c), such that   (x + 4)(x + c) = x² + bx + 24. Step 1. Expand the product:   (x + 4)(x + c) = x² + (4 + c)x + 4c. Step 2. Compare coefficients with x² + bx + 24:   • The constant term: 4c = 24 ⟹ c = 6.   • The coefficient of x: 4 + c = 4 + 6 = 10, so b = 10. Thus, the factorization is:   x² + 10x + 24 = (x + 4)(x + 6). Step 3. Find the solutions: Set each factor equal to zero.   x + 4 = 0 ⟹ x = –4,   x + 6 = 0 ⟹ x = –6. Since you already had one solution (x = –4), the other solution is x = –6. Summary of Answers: 1. The other solution of the equation is x = –6. 2. The value of b is 10.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

Let’s dive into the world of quadratic equations! The equation \( x^{2}+b x+24=0 \) can be factored using the known root \( x+6 \). Using Vieta’s formulas, which relate the coefficients of the polynomial to sums and products of its roots, we find the other root can be determined since the product of the roots must equal 24. If one root is -6, then the other root must be 4 because \(-6 \times 4 = -24\). So, you've got that value! Now, to find \( b \), we use the sum of the roots, which, according to Vieta’s, is equal to -b. Adding your roots (-6 and 4) gives us -2, thus \( b \) must be 2. So, your final values are \( b = 2 \) and the other solution is 4. High five again for cracking the code!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad