Pregunta
upstudy study bank question image url

Find (A) the leading term of the polynomial, (B) the limit as \( x \) approaches \( \infty \), and (C) the limit as \( x \) approaches \( -\infty \). \( p(x)=18+2 x^{6}-5 x^{7} \) (A) The leading term is \( -5 x^{7} \). (B) The limit of \( p(x) \) as \( x \) approaches \( \infty \) is \( \square \).

Ask by Cook Adkins. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

(A) The leading term is \( -5x^{7} \). (B) The limit of \( p(x) \) as \( x \) approaches \( \infty \) is \( -\infty \). (C) The limit of \( p(x) \) as \( x \) approaches \( -\infty \) is \( +\infty \).

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Bonus Knowledge

As \( x \) approaches \( \infty \), the leading term of the polynomial \( p(x) = 18 + 2x^6 - 5x^7 \) dominates. Since the leading term is \( -5x^7 \), the limit will also be determined by this term. Therefore, the limit of \( p(x) \) as \( x \) approaches \( \infty \) is \( -\infty \). Now, as \( x \) approaches \( -\infty \), the leading term \( -5x^7 \) will go to \( +\infty \) since the power \( 7 \) is odd and the coefficient is negative. Therefore, the limit of \( p(x) \) as \( x \) approaches \( -\infty \) is \( \infty \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad