Find (A) the leading term of the polynomial, (B) the limit as \( x \) approaches \( \infty \), and (C) the limit as \( x \) approaches \( -\infty \). \( p(x)=18+2 x^{6}-5 x^{7} \) (A) The leading term is \( -5 x^{7} \). (B) The limit of \( p(x) \) as \( x \) approaches \( \infty \) is \( \square \).
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
As \( x \) approaches \( \infty \), the leading term of the polynomial \( p(x) = 18 + 2x^6 - 5x^7 \) dominates. Since the leading term is \( -5x^7 \), the limit will also be determined by this term. Therefore, the limit of \( p(x) \) as \( x \) approaches \( \infty \) is \( -\infty \). Now, as \( x \) approaches \( -\infty \), the leading term \( -5x^7 \) will go to \( +\infty \) since the power \( 7 \) is odd and the coefficient is negative. Therefore, the limit of \( p(x) \) as \( x \) approaches \( -\infty \) is \( \infty \).