Pregunta
upstudy study bank question image url

2. \( \left[\begin{array}{cc}0 & -1 \\ 1 & 2\end{array}\right]^{t}-\left(2\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]\right)^{t} \)

Ask by Pritchard Haynes. in Thailand
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\[ \left[\begin{array}{cc} -2 & -3 \\ -5 & 0 \end{array}\right] \]

Solución

Alright, I need to solve the matrix expression: \( \left[\begin{array}{cc}0 & -1 \\ 1 & 2\end{array}\right]^{t}-\left(2\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]\right)^{t} \). Let's break this down step by step to ensure accuracy. First, I'll identify the matrices involved: 1. **Matrix A**: \( \left[\begin{array}{cc}0 & -1 \\ 1 & 2\end{array}\right] \) 2. **Matrix B**: \( \left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right] \) The expression involves transposing these matrices and then performing subtraction after scaling Matrix B by a factor of 2. **Step 1: Transpose Matrix A** The transpose of a matrix is obtained by flipping it over its diagonal, which means converting its rows to columns and vice versa. So, \( A^{t} = \left[\begin{array}{cc}0 & 1 \\ -1 & 2\end{array}\right] \) **Step 2: Transpose Matrix B** Similarly, the transpose of Matrix B is: \( B^{t} = \left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right] \) **Step 3: Scale Matrix B by 2** Multiplying Matrix B by 2: \( 2B = 2 \times \left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right] = \left[\begin{array}{ll}2 \times 1 & 2 \times 2 \\ 2 \times 2 & 2 \times 1\end{array}\right] = \left[\begin{array}{ll}2 & 4 \\ 4 & 2\end{array}\right] \) **Step 4: Transpose the Scaled Matrix B** Now, transpose the scaled Matrix B: \( (2B)^{t} = \left[\begin{array}{ll}2 & 4 \\ 4 & 2\end{array}\right]^{t} = \left[\begin{array}{ll}2 & 4 \\ 4 & 2\end{array}\right] \) (Note: The transpose of a matrix is equal to the matrix itself if it's symmetric, which it is in this case.) **Step 5: Subtract the Transposed Scaled Matrix B from the Transposed Matrix A** Now, perform the subtraction: \( A^{t} - (2B)^{t} = \left[\begin{array}{cc}0 & 1 \\ -1 & 2\end{array}\right] - \left[\begin{array}{ll}2 & 4 \\ 4 & 2\end{array}\right] \) To subtract two matrices, subtract corresponding elements: - First row, first column: \( 0 - 2 = -2 \) - First row, second column: \( 1 - 4 = -3 \) - Second row, first column: \( -1 - 4 = -5 \) - Second row, second column: \( 2 - 2 = 0 \) So, the resulting matrix is: \( \left[\begin{array}{cc}-2 & -3 \\ -5 & 0\end{array}\right] \) **Double-Checking the Calculations** It's always good to verify the results to ensure there are no calculation errors. 1. **Transpose of A**: Correctly flipped the rows and columns. 2. **Scaling Matrix B**: Multiplied each element by 2 accurately. 3. **Transpose of Scaled B**: Recognized that the matrix is symmetric, so the transpose is the same as the original. 4. **Subtraction**: Performed element-wise subtraction correctly. Everything checks out, so the final result is accurate.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve the expression \( \left[\begin{array}{cc}0 & -1 \\ 1 & 2\end{array}\right]^{t}-\left(2\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]\right)^{t} \), we first recognize that \(t\) denotes the transpose of a matrix. Taking the transpose of the first matrix: \[ \left[\begin{array}{cc}0 & -1 \\ 1 & 2\end{array}\right]^{t} = \left[\begin{array}{cc}0 & 1 \\ -1 & 2\end{array}\right] \] Next, we multiply the second matrix by 2, then take the transpose: \[ 2\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right] = \left[\begin{array}{ll}2 & 4 \\ 4 & 2\end{array}\right] \] \[ \left[\begin{array}{ll}2 & 4 \\ 4 & 2\end{array}\right]^{t} = \left[\begin{array}{ll}2 & 4 \\ 4 & 2\end{array}\right] \] Now we can perform the subtraction: \[ \left[\begin{array}{cc}0 & 1 \\ -1 & 2\end{array}\right] - \left[\begin{array}{cc}2 & 4 \\ 4 & 2\end{array}\right] = \left[\begin{array}{cc}0-2 & 1-4 \\ -1-4 & 2-2\end{array}\right] \] This gives us: \[ \left[\begin{array}{cc}-2 & -3 \\ -5 & 0\end{array}\right] \] Thus, the final result is: \[ \left[\begin{array}{cc}-2 & -3 \\ -5 & 0\end{array}\right] \]

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad