Pregunta
upstudy study bank question image url

Question 2 The time ( \( t \) ) taken to buy a fuel at a petrol station Variation varies directly as The number of vechice \( v \) on a quenc and inversely as the number of pumps (p) available in a station. In a station of 5 pumps, it took 10 minutes to fuel 20 vechiles Find; (a) The relationship betweet \( t \) \( p \) and \( U \). (b) The time it will tablie to puel 50 vechiles in station usitte 2 pumps

Ask by Carrillo Christensen. in Ghana
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**(a) The relationship is \( t = k \cdot \frac{v}{p} \). **(b) It will take 62.5 minutes to fuel 50 vehicles with 2 pumps.**

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

The Deep Dive

To tackle this problem, we first need to derive the relationship. Since time \( t \) varies directly as the number of vehicles \( v \) and inversely as the number of pumps \( p \), we can express it as: \[ t = k \cdot \frac{v}{p} \] Where \( k \) is a constant. Given that it took 10 minutes to fuel 20 vehicles at a station with 5 pumps, we can substitute these values to find \( k \): \[ 10 = k \cdot \frac{20}{5} \implies k = 10 \cdot \frac{5}{20} = 2.5 \] Now we have: \[ t = 2.5 \cdot \frac{v}{p} \] To find the time it will take to fuel 50 vehicles at a station with 2 pumps, we substitute \( v = 50 \) and \( p = 2 \): \[ t = 2.5 \cdot \frac{50}{2} = 2.5 \cdot 25 = 62.5 \text{ minutes} \] So, it will take 62.5 minutes to fuel 50 vehicles with 2 pumps. Did you know that in some countries, the number of vehicles at fuel stations can increase significantly during holiday seasons or major events, leading to longer waiting times? Knowing how to optimize the number of pumps and manage queues can significantly impact customer satisfaction. Moreover, while calculating relationships like this, common mistakes include forgetting to correctly apply direct and inverse relationships or misplacing constants. Double-checking each step can prevent such errors and help you nail those math problems!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad