Pregunta
upstudy study bank question image url

Solve the following inequality algebraically
Select the correct choice below and fill in the answer box(es) within your choice
A. The solution does not have any isolated values. It can be described as
(Type your answer in interval notation)
B. The solution consists exclusively of one or more isolated values It can be described as {
(Use a comma to separate answers as needed.)
C. The solution has at least one isolated value It can be described as un }.
(In the first answer box, type your answer in interval notation. In the second answer box, ust
separate answers as needed.)

Ask by Davey Osborne. in the United States
Jan 17,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solution is all real numbers less than -7, between -3 and -2, 0, and greater than 3.

Solución

To solve the inequality
we need to determine where the expression is nonnegative.
Step 1: Identify Critical Points
The critical points occur where the numerator or denominator is zero:
  • Numerator: (double root), , .
  • Denominator: , (these points are excluded as they make the denominator zero).
Step 2: Determine Intervals
The critical points divide the real number line into the following intervals:
Step 3: Test Each Interval
Evaluate the sign of the expression in each interval:
  1. :
    • Numerator: Positive.
    • Denominator: Positive.
    • Expression: Positive.
  2. :
    • Numerator: Negative.
    • Denominator: Negative.
    • Expression: Positive.
  3. :
    • Numerator: Positive.
    • Denominator: Negative.
    • Expression: Negative.
  4. :
    • Numerator: Negative.
    • Denominator: Negative.
    • Expression: Positive.
  5. :
    • Numerator: Positive.
    • Denominator: Negative.
    • Expression: Negative.
  6. :
    • Numerator: Positive.
    • Denominator: Positive.
    • Expression: Positive.
Step 4: Include Boundary Points
  • and make the numerator zero, so they are included.
  • makes the numerator zero, so it is included.
  • and are excluded as they make the denominator zero.
Final Solution:
The solution consists of intervals where the expression is nonnegative and includes the isolated point .

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve the given inequality
we first need to determine the critical points by setting the numerator and denominator to zero.
The numerator is zero at:
The denominator is zero at:
Now, we identify our critical points: .
Next, we analyze the sign of the expression in each of the intervals defined by these critical points:
Calculating the sign of the expression in each interval:
  • For (e.g., ): Positive
  • For (e.g., ): Negative
  • For (e.g., ): Positive
  • For (e.g., ): Negative
  • For (e.g., ): Positive
  • For (e.g., ): Positive
Now, we summarize the sign changes:
  • The expression is non-negative (≥ 0) in the intervals:
Next, let’s note the critical points:
  • makes the denominator zero (not included).
  • The numerator is zero at , , and (included).
  • We can include in a non-strict inequality (can’t include it since it’s in the denominator).
Thus, the solution in interval notation is:
The intervals that satisfy the inequality are:
Therefore, the answer is:
A. The solution does not have any isolated values. It can be described as:
In interval notation, this shows the continuous ranges without single isolated values.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad