Pregunta
Acertain type of paper towel costs
to manufacture
and sells for
per roll. The fixed cost of producing
500,000 is
. (A) How many of the 500,000 rolls
must be made before the company breaks even?
(B) What is the profit on 500,000 rolls?
and sells for
500,000 is
must be made before the company breaks even?
(B) What is the profit on 500,000 rolls?
Ask by Herrera Lynch. in the United States
Jan 21,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
(A) The company must produce 50,000 rolls to break even.
(B) Producing 500,000 rolls results in a profit of $225,000.
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Como
Extra Insights
To determine how many rolls must be sold to break even, we first need to calculate the total cost and the total revenue associated with producing and selling the paper towels. The total cost consists of fixed costs plus variable costs, while total revenue comes from the sales of the rolls.
Step-by-step for Part A:
Fixed costs = $25,000
Variable cost per roll = $0.19
Selling price per roll = $0.69
Fixed costs = $25,000
Variable cost per roll = $0.19
Selling price per roll = $0.69
Total cost for
rolls = Fixed costs + (Variable cost per roll × Number of rolls)
Total revenue = Selling price per roll × Number of rolls
Total revenue = Selling price per roll × Number of rolls
To find the break-even point:
Total revenue = Total cost
Combine terms:
Total revenue = Total cost
Combine terms:
So, the company must sell 50,000 rolls to break even.
Step-by-step for Part B:
For the total profit on 500,000 rolls, we first calculate total revenue and total costs for that quantity.
For the total profit on 500,000 rolls, we first calculate total revenue and total costs for that quantity.
Total revenue from 500,000 rolls:
Total costs for 500,000 rolls:
Profit = Total revenue - Total costs
Profit = 345000 - 120000 = 225000
Profit = 345000 - 120000 = 225000
Thus, the profit on 500,000 rolls is $225,000.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium