Here is a circle and a scaled copy of the circle with a scale factor of 2 . 3.1 How does the circumference of the scaled copy compare to the circumference of the original circle?
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
The circumference of a circle is calculated using the formula \(C = 2\pi r\), where \(r\) is the radius. If you scale the radius of the original circle by a factor of 2, the new radius becomes \(2r\). Plugging that into the formula gives you a new circumference of \(2\pi(2r) = 4\pi r\). Thus, the circumference of the scaled copy is twice that of the original circle! When you think about real-world examples, consider how scaling affects things like sports balls or wheels. If you double the radius of a basketball, not only does its size increase but so does its circumference—making it larger and potentially more challenging to handle! This scaling principle applies widely, from designing vehicles to optimizing space in architecture.