Pregunta
upstudy study bank question image url

\( \left. \begin{array} { c c c c } { X } & { \$ 100 } & { \$ 75 } & { \$ 8 } \\ { P ( X ) } & { \frac { 1 } { 100 } = 0.01 } & { \frac { 3 } { 100 } = 0.03 } & { \frac { 96 } { 100 } = 0.96 } \end{array} \right. \)

Ask by Chavez Campbell. in the United States
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The expected value of \( X \) is \$10.93, with a variance of 210.73 and a standard deviation of approximately \$14.52.

Solución

It looks like you've provided a probability distribution table for a discrete random variable \( X \). Let's interpret the table and perform some useful calculations, such as finding the **expected value** and **variance** of \( X \). ### Given Probability Distribution \[ \begin{array}{ccc} X & \text{P}(X) \\ \$100 & 0.01 \\ \$75 & 0.03 \\ \$8 & 0.96 \\ \end{array} \] - **Possible Outcomes (\( X \))**: \$100, \$75, \$8 - **Probabilities (\( \text{P}(X) \))**: 0.01, 0.03, 0.96 respectively ### 1. **Expected Value (\( E(X) \))** The expected value is a measure of the central tendency of the distribution. It represents the average outcome if the experiment is repeated many times. \[ E(X) = \sum (X \times \text{P}(X)) \] Calculating each term: - \( \$100 \times 0.01 = \$1.00 \) - \( \$75 \times 0.03 = \$2.25 \) - \( \$8 \times 0.96 = \$7.68 \) Adding them up: \[ E(X) = \$1.00 + \$2.25 + \$7.68 = \$10.93 \] **Interpretation**: On average, the expected value of \( X \) is \$10.93. ### 2. **Variance (\( \text{Var}(X) \)) and Standard Deviation (\( \sigma_X \))** Variance measures the spread of the distribution around the expected value. \[ \text{Var}(X) = E(X^2) - [E(X)]^2 \] First, compute \( E(X^2) \): \[ E(X^2) = \sum (X^2 \times \text{P}(X)) \] Calculating each term: - \( (100)^2 \times 0.01 = 10000 \times 0.01 = 100 \) - \( (75)^2 \times 0.03 = 5625 \times 0.03 = 168.75 \) - \( (8)^2 \times 0.96 = 64 \times 0.96 = 61.44 \) Adding them up: \[ E(X^2) = 100 + 168.75 + 61.44 = 330.19 \] Now, calculate the variance: \[ \text{Var}(X) = 330.19 - (10.93)^2 = 330.19 - 119.46 = 210.73 \] The **standard deviation** is the square root of the variance: \[ \sigma_X = \sqrt{210.73} \approx 14.52 \] **Interpretation**: - **Variance**: 210.73 - **Standard Deviation**: Approximately 14.52 ### 3. **Summary** - **Expected Value (\( E(X) \))**: \$10.93 - **Variance (\( \text{Var}(X) \))**: 210.73 - **Standard Deviation (\( \sigma_X \))**: \$14.52 If you have a specific question or need further analysis related to this distribution, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

Did you know that the data you're looking at represents a probability distribution? In this setup, \(X\) has three possible outcomes: \$100, \$75, and \$8, with their respective probabilities. This kind of model is commonly used in finance to evaluate investment options or in gambling to calculate the odds of winning. Understanding these probabilities can help you make smarter decisions, whether you're playing a game or investing your money! To make the most of such models, it's crucial to avoid common pitfalls. One major mistake is ignoring the expected value calculation. You can find the expected value by multiplying each outcome by its probability and adding them all up. This gives you a clearer idea of what to expect in terms of return. Not understanding the importance of probabilities can lead you to take unwanted risks, so always calculate before diving in!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad