3. Skylar read a book for \( 2 \frac{1}{4} \) hours and then spoke on the phone for \( 1 \frac{1}{2} \) hours How much time did Skylar spend reading and ralking on the phone? \( \begin{array}{ll}\text { A. } 3 \frac{1}{3} \text { hours } & \text { C. } \frac{41}{4} \text { hours } \\ \text { B. } 3 \frac{3}{4} \text { hours } & \text { D. } 4 \frac{3}{4} \text { hours }\end{array} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find out how much time Skylar spent reading and talking on the phone, start by converting the mixed numbers into improper fractions: Skylar read for \( 2 \frac{1}{4} \) hours, which converts to \( \frac{9}{4} \) hours (since \( 2 \times 4 + 1 = 9 \)). Skylar talked on the phone for \( 1 \frac{1}{2} \) hours, which converts to \( \frac{3}{2} \) hours (since \( 1 \times 2 + 1 = 3 \)). Next, to add these, convert \( \frac{3}{2} \) to an equivalent fraction of \( \frac{6}{4} \) (by multiplying numerator and denominator by 2). Now, you can add the fractions: \[ \frac{9}{4} + \frac{6}{4} = \frac{15}{4} \] Converted back to a mixed number, \( \frac{15}{4} = 3 \frac{3}{4} \) hours. So, the answer is B. \( 3 \frac{3}{4} \) hours.