Pregunta
upstudy study bank question image url

A student solves the following equation and determines that the solution is -2 . Is the student correct? Explain. \( \frac{3}{a+2}-\frac{6 a}{a^{2}-4}=\frac{1}{a-2} \)

Ask by Powers Blake. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The student is incorrect because there are no real solutions to the equation, so -2 is not a valid solution.

Solución

Solve the equation \( \frac{3}{a+2}-\frac{6a}{a^{2}-4}=\frac{1}{a-2} \). Solve the equation by following steps: - step0: Solve for \(a\): \(\frac{3}{a+2}-\frac{6a}{a^{2}-4}=\frac{1}{a-2}\) - step1: Find the domain: \(\frac{3}{a+2}-\frac{6a}{a^{2}-4}=\frac{1}{a-2},a \in \left(-\infty,-2\right)\cup \left(-2,2\right)\cup \left(2,+\infty\right)\) - step2: Multiply both sides of the equation by LCD: \(\left(\frac{3}{a+2}-\frac{6a}{a^{2}-4}\right)\left(a-2\right)\left(a+2\right)=\frac{1}{a-2}\times \left(a-2\right)\left(a+2\right)\) - step3: Simplify the equation: \(-3a-6=a+2\) - step4: Move the expression to the left side: \(-3a-a=2+6\) - step5: Add and subtract: \(-4a=2+6\) - step6: Add and subtract: \(-4a=8\) - step7: Change the signs: \(4a=-8\) - step8: Divide both sides: \(\frac{4a}{4}=\frac{-8}{4}\) - step9: Divide the numbers: \(a=-2\) - step10: Check if the solution is in the defined range: \(a=-2,a \in \left(-\infty,-2\right)\cup \left(-2,2\right)\cup \left(2,+\infty\right)\) - step11: Find the intersection: \(a \in \varnothing \) The solution to the equation \( \frac{3}{a+2}-\frac{6a}{a^{2}-4}=\frac{1}{a-2} \) is that there are no real solutions for \( a \). Therefore, the student is incorrect in stating that the solution is -2.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To check if the student’s solution of \( a = -2 \) is correct, we’ll first substitute \( -2 \) into the original equation. Notice that \( a^2 - 4 = (-2)^2 - 4 = 0 \), which makes the denominator of the second term undefined. Since we cannot have a denominator of zero, \( a = -2 \) is not a valid solution. The student is incorrect! Now, let’s find the correct solutions. First, we can simplify the equation. The equation can be rewritten as: \[ \frac{3}{a + 2} - \frac{6a}{(a - 2)(a + 2)} = \frac{1}{a - 2} \]. By finding a common denominator and integrating the expressions step by step, we can find the valid values for \( a \) that satisfy the equation without leading to undefined expressions.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad