Pregunta
upstudy study bank question image url

Use the remainder theorem to find for .
Specifically, give the quotient and the remainder for the associated division and the value of .
Quotient
Remainder

Ask by Ramos Ramirez. in the United States
Mar 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Quotient
Remainder

Solución

To find using the Remainder Theorem, we will evaluate the polynomial at .
The Remainder Theorem states that the remainder of the division of a polynomial by is equal to . In this case, we will find .
Let’s calculate step by step:
  1. Substitute into the polynomial:
  2. Calculate each term:
    • The constant term is
  3. Combine the results:
Now, let’s perform the calculations to find the final value of .
Calculate the value by following steps:
  • step0: Calculate:
  • step1: Simplify:
  • step2: Add the numbers:

    Now, let’s summarize the results:
  1. The value of is .
Next, we need to find the quotient and the remainder when dividing by .
Let’s perform the polynomial long division of by to find the quotient and the remainder.
The polynomial division will be set up as follows:
  • Dividend:
  • Divisor:
Let’s perform the division.
It seems that the direct approach to find the quotient using the equation did not yield a solution. Instead, I will perform polynomial long division manually to find the quotient and the remainder.

Polynomial Long Division Steps:

  1. Divide the leading term:
    • Divide by to get .
  2. Multiply and subtract:
    • Multiply by to get .
    • Subtract this from the original polynomial:
  3. Repeat the process:
    • Divide by to get .
    • Multiply by to get .
    • Subtract:
  4. Continue:
    • Divide by to get .
    • Multiply by to get .
    • Subtract:
  5. Final steps:
    • Divide by to get .
    • Multiply by to get .
    • Subtract:

Summary of Results:

  • Quotient:
  • Remainder:
  • Value of :
Now, we can fill in the boxes:
  • Quotient
  • Remainder

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To apply the remainder theorem, we need to evaluate directly by substituting into the polynomial .
Calculating :
So, the remainder when is divided by is .
Next, let’s find the quotient using polynomial long division. When we divide by :
  1. Divide by to get .
  2. Multiply by to get .
  3. Subtract from the original polynomial to get .
  4. Repeat this process until we end up with the result.
After performing the long division (details omitted for brevity), you find:
Quotient
Remainder
Putting it all together:
Quotient
Remainder

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad