Pregunta
Solve the following. \( \frac{5}{6} \div \frac{2}{3} \)
Ask by Thornton Stewart. in the United States
Feb 04,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\[
\frac{5}{6} \div \frac{2}{3} = \frac{5}{4} \quad \text{or} \quad 1 \frac{1}{4} \quad \text{or} \quad 1.25
\]
Solución
To solve the division of two fractions \(\frac{5}{6} \div \frac{2}{3}\), follow these steps:
1. **Recall the Rule for Dividing Fractions:**
Dividing by a fraction is the same as multiplying by its reciprocal. In other words:
\[
\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c}
\]
2. **Apply the Rule to the Given Problem:**
\[
\frac{5}{6} \div \frac{2}{3} = \frac{5}{6} \times \frac{3}{2}
\]
3. **Multiply the Numerators and the Denominators:**
- **Numerators:** \(5 \times 3 = 15\)
- **Denominators:** \(6 \times 2 = 12\)
So,
\[
\frac{5}{6} \times \frac{3}{2} = \frac{15}{12}
\]
4. **Simplify the Fraction:**
Both the numerator and the denominator can be divided by 3:
\[
\frac{15 \div 3}{12 \div 3} = \frac{5}{4}
\]
Alternatively, \(\frac{5}{4}\) can be expressed as a mixed number:
\[
1 \frac{1}{4}
\]
Or as a decimal:
\[
1.25
\]
**Final Answer:**
\[
\frac{5}{6} \div \frac{2}{3} = \frac{5}{4} \quad \text{or} \quad 1 \frac{1}{4} \quad \text{or} \quad 1.25
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
To solve \( \frac{5}{6} \div \frac{2}{3} \), you can multiply by the reciprocal of the second fraction. So, it becomes: \( \frac{5}{6} \times \frac{3}{2} \) Now, multiply the numerators and the denominators: Numerator: \( 5 \times 3 = 15 \) Denominator: \( 6 \times 2 = 12 \) So you get \( \frac{15}{12} \). Now, simplify it by finding the greatest common divisor (GCD) of 15 and 12, which is 3: \( \frac{15 \div 3}{12 \div 3} = \frac{5}{4} \) So, \( \frac{5}{6} \div \frac{2}{3} = \frac{5}{4} \) or \( 1 \frac{1}{4} \) in mixed number form.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium