Pregunta
upstudy study bank question image url

Activity 10 Simplify the following \( \frac{\text { expressions }}{\text { a) } \frac{x^{2}+5 x+6}{x^{2}-9} \div \frac{x^{2}-4}{x^{2}-5 x+6}} \) b) \( \frac{x}{r-2}-\frac{1}{x+2}+\frac{8}{4-x^{2}} \)

Ask by Perkins Chang. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Simplified Results:** - **a)** \( 1 \) - **b)** \( \frac{x + 3}{x + 2} \)

Solución

Let's simplify each part of **Activity 10** step by step. --- ### **Problem a)** Simplify: \[ \frac{x^{2}+5x+6}{x^{2}-9} \div \frac{x^{2}-4}{x^{2}-5x+6} \] **Step 1: Rewrite the Division as Multiplication** Dividing by a fraction is equivalent to multiplying by its reciprocal: \[ \frac{x^{2}+5x+6}{x^{2}-9} \times \frac{x^{2}-5x+6}{x^{2}-4} \] **Step 2: Factor Each Polynomial** - \( x^{2} + 5x + 6 = (x + 2)(x + 3) \) - \( x^{2} - 9 = (x - 3)(x + 3) \) - \( x^{2} - 5x + 6 = (x - 2)(x - 3) \) - \( x^{2} - 4 = (x - 2)(x + 2) \) **Step 3: Substitute the Factored Forms** \[ \frac{(x + 2)(x + 3)}{(x - 3)(x + 3)} \times \frac{(x - 2)(x - 3)}{(x - 2)(x + 2)} \] **Step 4: Cancel Out Common Factors** - \( (x + 3) \) cancels out. - \( (x - 3) \) cancels out. - \( (x - 2) \) cancels out. - \( (x + 2) \) cancels out. **Step 5: Simplify Remaining Terms** After cancellation, we're left with: \[ 1 \] **Final Answer for Part a):** \[ 1 \] --- ### **Problem b)** Simplify: \[ \frac{x}{x - 2} - \frac{1}{x + 2} + \frac{8}{4 - x^{2}} \] **Step 1: Factor the Denominators** - \( 4 - x^{2} = (2 - x)(2 + x) = -(x - 2)(x + 2) \) **Step 2: Rewrite the Expression with a Common Denominator** The common denominator is \( (x - 2)(x + 2) \). \[ \frac{x}{x - 2} = \frac{x(x + 2)}{(x - 2)(x + 2)} \] \[ -\frac{1}{x + 2} = -\frac{(x - 2)}{(x - 2)(x + 2)} \] \[ \frac{8}{4 - x^{2}} = -\frac{8}{(x - 2)(x + 2)} \] **Step 3: Combine the Fractions** \[ \frac{x(x + 2) - (x - 2) - 8}{(x - 2)(x + 2)} \] **Step 4: Simplify the Numerator** Expand and combine like terms: \[ x(x + 2) = x^2 + 2x \] \[ - (x - 2) = -x + 2 \] \[ x^2 + 2x - x + 2 - 8 = x^2 + x - 6 \] **Step 5: Factor the Numerator** \[ x^2 + x - 6 = (x + 3)(x - 2) \] **Step 6: Cancel Out Common Factors** \[ \frac{(x + 3)(x - 2)}{(x - 2)(x + 2)} = \frac{x + 3}{x + 2} \] **Final Answer for Part b):** \[ \frac{x + 3}{x + 2} \] --- ### **Summary of Results** - **a)** The simplified expression is: \[ 1 \] - **b)** The simplified expression is: \[ \frac{x + 3}{x + 2} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To simplify the expression \( \frac{x^{2}+5 x+6}{x^{2}-9} \div \frac{x^{2}-4}{x^{2}-5 x+6} \), first, rewrite the division as multiplication: \[ \frac{x^{2}+5 x+6}{x^{2}-9} \times \frac{x^{2}-5 x+6}{x^{2}-4} \] Factor each polynomial: - \( x^{2}+5 x+6 = (x+2)(x+3) \) - \( x^{2}-9 = (x-3)(x+3) \) - \( x^{2}-4 = (x-2)(x+2) \) - \( x^{2}-5x+6 = (x-2)(x-3) \) Putting the factored forms into the expression gives: \[ \frac{(x+2)(x+3)}{(x-3)(x+3)} \times \frac{(x-2)(x-3)}{(x-2)(x+2)} \] Now, cancel like terms: - The \( (x+2) \) terms cancel. - The \( (x-2) \) terms cancel. - The \( (x+3) \) terms cancel. This simplifies to: \[ \frac{1}{(x-3)} \] For part b, start with the expression: \[ \frac{x}{r-2}-\frac{1}{x+2}+\frac{8}{4-x^{2}} \] First, factor the last term as \( 4-x^{2} = (2-x)(2+x) \), and rewrite the denominator for consistency. The expression becomes: \[ \frac{x}{r-2}-\frac{1}{x+2}+\frac{8}{(2-x)(2+x)} \] To simplify this, you will need a common denominator, which can be \( (r-2)(x+2)(2-x)(2+x) \). Rewrite each term with this common denominator and combine them. This process involves some algebraic manipulation, but be careful to add fractions correctly to avoid common mistakes like ignoring the negative sign when dealing with \( (2-x) \). Ultimately, you will combine and simplify the fractions to arrive at your final result.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad