Solve the system by substitution. \[ \begin{array}{l} 6 x-2 y=26 \\ -y+3=x\end{array} \]
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To solve the system by substitution, we first take the second equation, \(-y + 3 = x\), and express \(y\) in terms of \(x\): \[ y = 3 - x \] Next, we substitute this expression for \(y\) into the first equation \(6x - 2y = 26\): \[ 6x - 2(3 - x) = 26 \] Expanding the equation gives: \[ 6x - 6 + 2x = 26 \] Combining like terms results in: \[ 8x - 6 = 26 \] Now, add 6 to both sides: \[ 8x = 32 \] Next, divide both sides by 8: \[ x = 4 \] Now that we have \(x\), we can find \(y\) using the equation \(y = 3 - x\): \[ y = 3 - 4 = -1 \] Thus, the solution to the system is: \[ (x, y) = (4, -1) \]