Determine the value(s) of in for which the roots of the equation are non-real. Given that \( f(x)=x^{2}-p x+8+2 p \) has two equal root and \( p<0 \), determine the coodinates of the turning point, \( h(x)=f(x)-3 \). Given: \( (x+5)^{2}=1-p^{2} \) Calculate the values of \( p \) for which the roots of the equation are non-real.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find the values of \( p \) for which the roots of the equation \( (x+5)^{2}=1-p^{2} \) are non-real, we need to ensure that the right side is less than 0. Therefore, set up the inequality: \[ 1 - p^2 < 0 \] This simplifies to: \[ p^2 > 1 \] Taking the square root gives us: \[ |p| > 1 \] Since \( p < 0 \), this means: \[ p < -1 \] Now, let's also delve into the turning point of \( h(x) = f(x) - 3 \). The function \( f(x) \) has a vertex (or turning point) at: \[ x = \frac{p}{2} \] Substituting this value into \( f(x) \) gives the y-coordinate: \[ f\left(\frac{p}{2}\right) = \left(\frac{p}{2}\right)^{2} - p\left(\frac{p}{2}\right) + 8 + 2p \] Calculating: \[ = \frac{p^2}{4} - \frac{p^2}{2} + 8 + 2p = \frac{p^2 - 2p^2 + 32 + 8p}{4} = \frac{-p^2 + 8p + 32}{4} \] Finally, to find \( h(x) \), adjust the output by subtracting 3: \[ h(x) = f(x) - 3 = \frac{-p^2 + 8p + 32 - 12}{4} = \frac{-p^2 + 8p + 20}{4} \] Thus, the turning point of \( h(x) \) occurs at: \[ \left( \frac{p}{2}, \frac{-p^2 + 8p + 20}{4} \right). \]