\( \begin{array}{ll}\text { a) } \sqrt[3]{7} \cdot \sqrt[5]{7} & \text { d) }\left(x^{\frac{5}{4}}: y^{-\frac{5}{8}}\right)^{-\frac{4}{5}} \\ \text { b) } x^{-\frac{1}{2}} \cdot x^{4} & \text { e) } \sqrt[3]{\sqrt{2}} \\ \text { c) }(2 a)^{\frac{5}{4}}:(2 a)^{\frac{3}{4}} & \text { f) } \frac{x}{\sqrt[3]{x^{2}} \cdot \sqrt[4]{x}}\end{array} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
Did you know that the concept of roots in mathematics can be traced back to ancient civilizations? The Babylonians were the first to use methods for approximation of square roots, while the Indian mathematician Brahmagupta advanced these concepts further by providing algorithms for square and cube roots. Fast forward to today, and we’re doing all sorts of cool things with roots and exponents! If you're looking to ace these kinds of problems, remember to keep your exponents organized! When multiplying like bases, you simply add the exponents, and when dividing, you subtract them. Also, don't forget to simplify your roots wherever possible! It’s like decluttering your math work—makes it so much clearer and easier to handle!