Find the maximum revenue for the revenue function \( R(x)=385 x-0.6 x^{2} \). (Round your answer to the nearest cent.) \( R=\$ \square \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find the maximum revenue, we can first rewrite the revenue function, \( R(x) = 385x - 0.6x^2 \), in a standard quadratic form. This is a downward-opening parabola, and its maximum value occurs at the vertex. The x-coordinate of the vertex can be found using the formula \( x = -\frac{b}{2a} \), where \( a = -0.6 \) and \( b = 385 \). Plugging in the values: \[ x = -\frac{385}{2 \times -0.6} = \frac{385}{1.2} \approx 320.83 \] Since we can't have a fraction of a unit, we round to the nearest whole number, which is 321. Now, substitute this value of x back into the revenue function to find the maximum revenue: \[ R(321) = 385(321) - 0.6(321)^2 \approx 123,285 - 61,263.6 \approx 62,021.4 \] So the maximum revenue is approximately \( R = \$62,021.40 \).