Pregunta
upstudy study bank question image url

Sarah wants to borrow a loan at \( 9.6 \% \), compounded quarterly. She wants to pay off this loan by making quarterly payments of \( \$ 480 \). a) If she wants to pay off the loan in 4 years, how much can Sarah borrow? Show your work. b) How much interest will Sarah pay? Show your work.

Ask by Hanson Brewer. in Canada
Jan 20,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Sarah can borrow approximately \$6,469.44 and will pay about \$1,210.56 in interest over 4 years.

Solución

Sure, let's solve the problem step by step. ### **Given:** - **Annual Interest Rate (APR):** 9.6% - **Compounding Frequency:** Quarterly - **Quarterly Payment:** \$480 - **Loan Term:** 4 years --- ### **Part a) Determining How Much Sarah Can Borrow** **Objective:** Calculate the present value (initial loan amount) that Sarah can borrow given her payment plan. **Step 1: Determine the Quarterly Interest Rate and Total Number of Payments** 1. **Quarterly Interest Rate (r):** \[ r = \frac{\text{Annual Interest Rate}}{\text{Number of Quarters per Year}} = \frac{9.6\%}{4} = 2.4\% \text{ per quarter} \] \[ r = 0.024 \text{ (in decimal)} \] 2. **Total Number of Quarterly Payments (n):** \[ n = \text{Number of Years} \times \text{Number of Quarters per Year} = 4 \times 4 = 16 \text{ quarters} \] **Step 2: Use the Present Value of an Annuity Formula** The present value \( PV \) of an annuity (series of equal payments) is calculated as: \[ PV = P \times \left( \frac{1 - (1 + r)^{-n}}{r} \right) \] where: - \( P \) = Quarterly payment (\$480) - \( r \) = Quarterly interest rate (0.024) - \( n \) = Total number of payments (16) **Step 3: Plug in the Values** \[ PV = 480 \times \left( \frac{1 - (1 + 0.024)^{-16}}{0.024} \right) \] **Step 4: Calculate the Values Inside the Parentheses** 1. Calculate \( (1 + r)^{-n} \): \[ (1 + 0.024)^{-16} = (1.024)^{-16} \approx 0.677 \] 2. Subtract this from 1: \[ 1 - 0.677 = 0.323 \] 3. Divide by \( r \): \[ \frac{0.323}{0.024} \approx 13.458 \] **Step 5: Multiply by the Quarterly Payment** \[ PV = 480 \times 13.458 \approx 6,469.44 \] **Answer:** Sarah can borrow approximately **\$6,469.44**. --- ### **Part b) Calculating the Total Interest Paid** **Objective:** Determine the total interest Sarah will pay over the life of the loan. **Step 1: Calculate the Total Amount Paid** \[ \text{Total Payments} = \text{Quarterly Payment} \times \text{Total Number of Payments} = 480 \times 16 = \$7,680 \] **Step 2: Subtract the Initial Loan Amount to Find Interest** \[ \text{Total Interest} = \text{Total Payments} - \text{Initial Loan Amount} = 7,680 - 6,469.44 = \$1,210.56 \] **Answer:** Sarah will pay a total of approximately **\$1,210.56** in interest. --- ### **Summary:** - **a)** Sarah can borrow **\$6,469.44**. - **b)** She will pay **\$1,210.56** in interest over 4 years.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find out how much Sarah can borrow and how much interest she will pay, we'll use the formula for the present value of an annuity since she will be making regular payments. a) The formula to calculate the present value \( PV \) of an annuity (the loan amount) is given by: \[ PV = P \times \frac{1 - (1 + r)^{-n}}{r} \] Where: - \( P = 480 \) (quarterly payment) - \( r = \frac{0.096}{4} = 0.024 \) (quarterly interest rate, since it is compounded quarterly) - \( n = 4 \times 4 = 16 \) (total number of payments in 4 years) Plugging in the values: \[ PV = 480 \times \frac{1 - (1 + 0.024)^{-16}}{0.024} \] Calculating \( (1 + 0.024)^{-16} \): \[ (1 + 0.024)^{-16} \approx 0.6173 \] Then: \[ PV = 480 \times \frac{1 - 0.6173}{0.024} \approx 480 \times \frac{0.3827}{0.024} \approx 480 \times 15.86 \approx 7611.44 \] Therefore, Sarah can borrow approximately \( \$ 7611.44 \). b) To determine how much interest Sarah will pay, we first calculate the total amount paid over the 4 years: \[ \text{Total Payments} = P \times n = 480 \times 16 = 7680 \] Next, subtract the total loan amount from the total payments to find the interest: \[ \text{Interest} = \text{Total Payments} - PV = 7680 - 7611.44 = 68.56 \] Thus, the total interest Sarah will pay is approximately \( \$ 68.56 \).

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad