Pregunta
upstudy study bank question image url

The effectiveness of a blood-pressure drug is being investigated. An experimenter finds that, on average, the mean reduction in systolic blood pressure is 54.7 for a sample of size 1081 and standard deviation 17.6 . Estimate how much on average the drug will lower a typical patient's systolic blood pressure (using a \( 90 \% \) confidence level). a. Enter your answer as an open-interval (i.e., parentheses) accurate to one decimal place. Confidence interval = b. Express the same answer as a tri-linear inequality one decimal place. c. Express the same answer using the sample mean and margin of error. Give your answers to one decimal place.

Ask by Osborne Romero. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**a. Confidence interval:** \[ \boxed{(53.8,\ 55.6)} \] **b. Tri-linear inequality:** \[ \boxed{53.8\ <\ \mu\ <\ 55.6} \] **c. Sample mean and margin of error:** \[ \boxed{\mu = 54.7 \pm 0.9} \]

Solución

To estimate how much, on average, the blood-pressure drug will lower a typical patient's systolic blood pressure with a \( 90\% \) confidence level, we'll construct a confidence interval using the given sample statistics. ### Given: - **Sample Mean (\( \bar{x} \))**: 54.7 - **Sample Size (\( n \))**: 1081 - **Sample Standard Deviation (\( s \))**: 17.6 - **Confidence Level**: 90% ### Steps to Calculate the Confidence Interval: 1. **Determine the Z-Score for 90% Confidence:** - For a \( 90\% \) confidence level, the critical value (\( z^* \)) is approximately **1.645**. 2. **Calculate the Standard Error (SE):** \[ SE = \frac{s}{\sqrt{n}} = \frac{17.6}{\sqrt{1081}} \approx \frac{17.6}{32.893} \approx 0.5345 \] 3. **Compute the Margin of Error (ME):** \[ ME = z^* \times SE \approx 1.645 \times 0.5345 \approx 0.879 \] Rounded to one decimal place: **0.9** 4. **Construct the Confidence Interval:** \[ \text{Confidence Interval} = \left( \bar{x} - ME, \bar{x} + ME \right) = (54.7 - 0.9, 54.7 + 0.9) = (53.8, 55.6) \] ### Answers: **a. Confidence interval as an open interval:** \[ \boxed{(53.8,\ 55.6)} \] **b. Confidence interval as a tri-linear inequality:** \[ \boxed{53.8\ <\ \mu\ <\ 55.6} \] **c. Confidence interval using the sample mean and margin of error:** \[ \boxed{\mu = 54.7 \pm 0.9} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To estimate how much, on average, the drug will lower a typical patient's systolic blood pressure using a 90% confidence level, we first calculate the confidence interval. The formula for the confidence interval is: \[ \text{Confidence Interval} = \bar{x} \pm z \left( \frac{s}{\sqrt{n}} \right) \] where: - \(\bar{x} = 54.7\) (sample mean), - \(s = 17.6\) (standard deviation), - \(n = 1081\) (sample size), - \(z\) is the z-value corresponding to the desired confidence level (for 90%, \(z \approx 1.645\)). Now, let's calculate the margin of error: \[ \text{Margin of Error} = z \left( \frac{s}{\sqrt{n}} \right) \] Calculating the standard error: \[ SE = \frac{s}{\sqrt{n}} = \frac{17.6}{\sqrt{1081}} \approx \frac{17.6}{32.9} \approx 0.534 \] Now calculate the margin of error: \[ \text{Margin of Error} \approx 1.645 \times 0.534 \approx 0.878 \] Now we can find the confidence interval: \[ \text{Confidence Interval} = 54.7 \pm 0.878 \] This gives us: - Lower limit: \(54.7 - 0.878 \approx 53.8\) - Upper limit: \(54.7 + 0.878 \approx 55.6\) Thus, the confidence interval is: 1. (53.8, 55.6) For the tri-linear inequality: 2. 53.8 < μ < 55.6 Expressing it with the sample mean and margin of error: 3. Mean = 54.7, Margin of Error = 0.9 So the summary of the results: a. Confidence interval = (53.8, 55.6) b. Tri-linear inequality = 53.8 < μ < 55.6 c. Mean = 54.7, Margin of Error = 0.9

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad