Pregunta
upstudy study bank question image url

are the roots of the equation \( \mathrm{x}^{2}-\mathrm{px}+\mathrm{q}=0 \), then the equation whose roots are \( \frac{q}{p-\alpha} \) and \( \frac{q}{p-\beta} \)

Ask by Guzman Davey. in India
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The new equation is the same as the original: \( x^{2} - p\,x + q = 0 \).

Solución

To find the equation whose roots are \( \frac{q}{p - \alpha} \) and \( \frac{q}{p - \beta} \), where \( \alpha \) and \( \beta \) are the roots of the original equation \( x^2 - p x + q = 0 \), follow these steps: ### 1. Understand the Original Equation The given quadratic equation is: \[ x^2 - p x + q = 0 \] The roots of this equation are \( \alpha \) and \( \beta \). By Vieta's formulas: \[ \alpha + \beta = p \quad \text{and} \quad \alpha \beta = q \] ### 2. Define the New Roots The new roots are: \[ r_1 = \frac{q}{p - \alpha} \quad \text{and} \quad r_2 = \frac{q}{p - \beta} \] ### 3. Find the Sum and Product of the New Roots Using these new roots, the sum \( S \) and product \( P \) can be calculated as follows: \[ S = r_1 + r_2 = \frac{q}{p - \alpha} + \frac{q}{p - \beta} \] \[ P = r_1 \cdot r_2 = \frac{q}{p - \alpha} \cdot \frac{q}{p - \beta} \] **Calculating \( S \):** \[ S = q \left( \frac{1}{p - \alpha} + \frac{1}{p - \beta} \right) = q \cdot \frac{(p - \beta) + (p - \alpha)}{(p - \alpha)(p - \beta)} \] \[ S = q \cdot \frac{2p - (\alpha + \beta)}{p^2 - p(\alpha + \beta) + \alpha \beta} \] Substitute \( \alpha + \beta = p \) and \( \alpha \beta = q \): \[ S = q \cdot \frac{2p - p}{p^2 - p \cdot p + q} = q \cdot \frac{p}{q} = p \] **Calculating \( P \):** \[ P = \frac{q^2}{(p - \alpha)(p - \beta)} = \frac{q^2}{p^2 - p(\alpha + \beta) + \alpha \beta} = \frac{q^2}{q} = q \] ### 4. Form the New Quadratic Equation With the sum and product of the new roots, the equation is: \[ x^2 - Sx + P = 0 \implies x^2 - p x + q = 0 \] ### Conclusion Interestingly, the quadratic equation with the new roots \( \frac{q}{p - \alpha} \) and \( \frac{q}{p - \beta} \) is **identical** to the original equation. **Final Answer:** \[ \boxed{x^{2} - p\,x + q = 0} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the equation whose roots are \( \frac{q}{p-\alpha} \) and \( \frac{q}{p-\beta} \), where \(\alpha\) and \(\beta\) are the roots of the original equation \( x^{2}-px+q=0 \), we can first use Vieta's formulas. According to Vieta's, \( \alpha + \beta = p \) and \( \alpha \beta = q \). Now, we can calculate the sum and product of the new roots: 1. The sum of the new roots: \[ \frac{q}{p-\alpha} + \frac{q}{p-\beta} = q \left( \frac{1}{p-\alpha} + \frac{1}{p-\beta} \right) = q \left( \frac{(p-\beta) + (p-\alpha)}{(p-\alpha)(p-\beta)} \right) = q \left( \frac{2p - (\alpha + \beta)}{(p-\alpha)(p-\beta)} \right) \] Substitute \(\alpha + \beta = p\): \[ = q \left( \frac{2p - p}{(p-\alpha)(p-\beta)} \right) = q \left( \frac{p}{(p-\alpha)(p-\beta)} \right) \] Now, \( (p-\alpha)(p-\beta) = p^2 - p(\alpha + \beta) + \alpha \beta = p^2 - p^2 + q = q \). Therefore, the sum is: \[ \frac{qp}{q} = p \] 2. The product of the new roots: \[ \frac{q}{p-\alpha} \cdot \frac{q}{p-\beta} = \frac{q^2}{(p-\alpha)(p-\beta)} = \frac{q^2}{q} = q \] Thus, the new equation with roots \( \frac{q}{p-\alpha} \) and \( \frac{q}{p-\beta} \) will have the form \( x^2 - (p)x + q = 0 \) which simplifies to: \[ x^2 - px + q = 0 \] This means that the structure of the new equation reflects the original equation!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad