A sporting goods manufacturer has \( 16 \frac{1}{3} \) yd of fabric to make soccer shorts. Each pair of soccer shorts requires \( \frac{2}{7} \) yd of fabric. a. How many pairs of soccer shorts can be made? b. How much material will be left over?
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To find out how many pairs of soccer shorts can be made, you first convert \( 16 \frac{1}{3} \) yards of fabric into an improper fraction. This gives you \( \frac{49}{3} \) yards. Each pair of shorts requires \( \frac{2}{7} \) yards. Dividing \( \frac{49}{3} \) by \( \frac{2}{7} \) means multiplying by its reciprocal: \[ \frac{49}{3} \div \frac{2}{7} = \frac{49}{3} \times \frac{7}{2} = \frac{343}{6} \approx 57.1667 \] This means 57 complete pairs of shorts can be made. To find the leftover material, calculate the total fabric used for 57 pairs: \[ 57 \times \frac{2}{7} = \frac{114}{7} \approx 16.2857 \text{ yards}. \] Now subtract this from the total fabric: \[ \frac{49}{3} - \frac{114}{7}. \] Finding a common denominator (21), we convert: \[ \frac{49}{3} = \frac{343}{21}, \quad \frac{114}{7} = \frac{342}{21}. \] Subtracting gives: \[ \frac{343}{21} - \frac{342}{21} = \frac{1}{21} \text{ yard}. \] Thus, \( 57 \) pairs of soccer shorts can be made, with \( \frac{1}{21} \) yard of fabric left over.