Pregunta

A sporting goods manufacturer has \( 16 \frac{1}{3} \) yd of fabric to make soccer shorts. Each pair of soccer shorts requires \( \frac{2}{7} \) yd of fabric. a. How many pairs of soccer shorts can be made? b. How much material will be left over?

Ask by Phillips Garrett. in the United States
Jan 25,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

57 pairs of soccer shorts can be made, with \(\frac{1}{21}\) yard of fabric left over.

Solución

To determine how many pairs of soccer shorts can be made and how much material will be left over, let's follow these steps: ### a. **Number of Pairs of Soccer Shorts That Can Be Made** 1. **Convert Mixed Number to Improper Fraction:** \[ 16 \frac{1}{3} \text{ yards} = \frac{16 \times 3 + 1}{3} = \frac{49}{3} \text{ yards} \] 2. **Determine the Number of Pairs:** Each pair requires \(\frac{2}{7}\) yard of fabric. To find out how many pairs can be made: \[ \text{Number of pairs} = \frac{\text{Total Fabric}}{\text{Fabric per Pair}} = \frac{\frac{49}{3}}{\frac{2}{7}} = \frac{49}{3} \times \frac{7}{2} = \frac{343}{6} = 57 \frac{1}{6} \] Since you can't produce a fraction of a pair, **57 full pairs** of soccer shorts can be made. ### b. **Amount of Material Left Over** 1. **Calculate Fabric Used for 57 Pairs:** \[ \text{Fabric used} = 57 \times \frac{2}{7} = \frac{114}{7} = 16 \frac{2}{7} \text{ yards} \] 2. **Determine Remaining Fabric:** \[ \text{Total Fabric} = 16 \frac{1}{3} \text{ yards} = \frac{49}{3} \text{ yards} \] \[ \text{Remaining Fabric} = \frac{49}{3} - \frac{114}{7} \] Convert to a common denominator (21): \[ \frac{49}{3} = \frac{343}{21}, \quad \frac{114}{7} = \frac{342}{21} \] \[ \text{Remaining Fabric} = \frac{343}{21} - \frac{342}{21} = \frac{1}{21} \text{ yard} \] Therefore, **\(\frac{1}{21}\) yard of fabric** will be left over. ### **Summary** - **a.** 57 pairs of soccer shorts can be made. - **b.** \(\frac{1}{21}\) yard of fabric will remain.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find out how many pairs of soccer shorts can be made, you first convert \( 16 \frac{1}{3} \) yards of fabric into an improper fraction. This gives you \( \frac{49}{3} \) yards. Each pair of shorts requires \( \frac{2}{7} \) yards. Dividing \( \frac{49}{3} \) by \( \frac{2}{7} \) means multiplying by its reciprocal: \[ \frac{49}{3} \div \frac{2}{7} = \frac{49}{3} \times \frac{7}{2} = \frac{343}{6} \approx 57.1667 \] This means 57 complete pairs of shorts can be made. To find the leftover material, calculate the total fabric used for 57 pairs: \[ 57 \times \frac{2}{7} = \frac{114}{7} \approx 16.2857 \text{ yards}. \] Now subtract this from the total fabric: \[ \frac{49}{3} - \frac{114}{7}. \] Finding a common denominator (21), we convert: \[ \frac{49}{3} = \frac{343}{21}, \quad \frac{114}{7} = \frac{342}{21}. \] Subtracting gives: \[ \frac{343}{21} - \frac{342}{21} = \frac{1}{21} \text{ yard}. \] Thus, \( 57 \) pairs of soccer shorts can be made, with \( \frac{1}{21} \) yard of fabric left over.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad