Pregunta
upstudy study bank question image url

Inequality Netation:
Number Line:
Interval Notation:

Ask by Schofield Greene. in the United States
Mar 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solution to the inequality is:
  • Inequality Notation:
  • Number Line: Open circles at and with shading in between.
  • Interval Notation:

Solución

Step 1: Set up the inequality
We are given the inequality
Step 2: Factor the quadratic
Factor the quadratic expression:
Step 3: Identify the critical points
Set each factor equal to zero:
These critical points divide the number line into three intervals.
Step 4: Determine the sign in each interval
  • For :
    Choose a test value, e.g., .
  • For :
    Choose a test value, e.g., .
  • For :
    Choose a test value, e.g., .
The inequality holds when .
Inequality Notation:
Number Line:
A number line representation would have open circles at and with shading between them.
Interval Notation:

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve the inequality , we start by finding the roots of the quadratic equation using the quadratic formula . Here, . The discriminant, , is positive, indicating two real roots. Plugging into the formula gives us , leading to roots at and . To find the intervals where the inequality holds, we can test points in the intervals , , and .
The expression is negative in the interval .
So the solutions are:
  • Number Line: Mark the open interval between -2 and 9.
  • Interval Notation: .
The quadratic can be graphed as a parabola opening upwards. The roots indicate where the curve crosses the x-axis, meaning that between these roots (i.e., to ), the function takes negative values. Always a good visual cue – if you see the parabola below the x-axis, you know you’re in the solution range!
When solving inequalities involving quadratics, a common mistake is to forget about the direction of the inequality when checking test points. Always remember to pick a test point from each interval created by the roots to verify whether it satisfies the inequality. Don’t rush through those test points – they can make all the difference!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad