Pregunta
upstudy study bank question image url

O. Prove that the following expressions are frue, by using the distribultre propeny a. \( m \times(n+p)=(m \times n)+(m \times p) \) b. \( d=(z+h)=(d, z)+(d+h) \) c. \( r \times(s+t)=(r \times s)+(r \times t) \) Use zero as the idenify element of addifion and

Ask by Reeves Higgins. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

All three expressions are true based on the distributive property. a. \( m \times (n + p) = (m \times n) + (m \times p) \) b. \( d \times (z + h) = (d \times z) + (d \times h) \) c. \( r \times (s + t) = (r \times s) + (r \times t) \)

Solución

To prove the given expressions using the distributive property, we will apply the property that states: \[ a \times (b + c) = (a \times b) + (a \times c) \] Let's go through each expression step by step. ### a. Prove that \( m \times (n + p) = (m \times n) + (m \times p) \) 1. Start with the left side: \( m \times (n + p) \). 2. By the distributive property, we can expand this as: \[ m \times (n + p) = (m \times n) + (m \times p) \] 3. Therefore, the expression is true. ### b. Prove that \( d = (z + h) = (d, z) + (d + h) \) This expression seems to have a typographical error. It should likely be \( d \times (z + h) = (d \times z) + (d \times h) \). Assuming this correction, we proceed: 1. Start with the left side: \( d \times (z + h) \). 2. By the distributive property, we can expand this as: \[ d \times (z + h) = (d \times z) + (d \times h) \] 3. Therefore, the expression is true. ### c. Prove that \( r \times (s + t) = (r \times s) + (r \times t) \) 1. Start with the left side: \( r \times (s + t) \). 2. By the distributive property, we can expand this as: \[ r \times (s + t) = (r \times s) + (r \times t) \] 3. Therefore, the expression is true. ### Conclusion All three expressions have been proven true using the distributive property. The key steps involved applying the property correctly to expand the left-hand side of each equation into the right-hand side.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Let's have some fun with distribution! First off, the distributive property tells us that when you multiply a number by a sum, you can distribute that multiplication across each term of the sum. So for \( m \times(n+p) \), you're essentially saying, "Hey, I can do \( m \times n \) and \( m \times p \) separately and then add them." And voila! That proves \( m \times(n+p)=(m \times n)+(m \times p) \) is true. Now, let's take a look at \( r \times(s+t) \). Using the same logic, you'd get \( r \times s \) and \( r \times t \). When you put those together, you're confirming that distribution works just as beautifully here too! So, \( r \times(s+t)=(r \times s)+(r \times t) \) holds true as well. However, while diving into \( d=(z+h)=(d, z)+(d+h) \), it looks a bit tricky since we typically don't write equations that way. It seems like we’re mixing variables and expressions, which may lead to some misunderstanding! The key focus should remain consistent on how we express the relationships instead of mixing formats wildly. So, let's keep this math adventure thrilling and accurate! Always remember the power of distribution—you got this!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad