Pregunta
upstudy study bank question image url

Show all your work to receive full credit. Write your answers as complete sentences. 1. Use the method of cylindrical shells to find the volume of the solid of revolution generated by rotating the region between the graphs of \( y=\frac{1}{x^{2}}, x=1, x=10 \), and \( y=0 \) about the \( y \)-axis.

Ask by Thornton Powell. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The volume of the solid is \( 2\pi \ln(10) \) cubic units, which is approximately \( 14.4543 \) cubic units.

Solución

To find the volume of the solid of revolution generated by rotating the region bounded by \( y = \frac{1}{x^{2}} \), \( x = 1 \), \( x = 10 \), and \( y = 0 \) about the \( y \)-axis using the method of cylindrical shells, we will follow these steps: **1. Understanding the Region and Setup:** We are given the function \( y = \frac{1}{x^{2}} \), which is a decreasing function for \( x > 0 \). The region of interest is bounded by: - The curve \( y = \frac{1}{x^{2}} \), - The vertical lines \( x = 1 \) and \( x = 10 \), - The horizontal line \( y = 0 \) (the \( x \)-axis). When we rotate this region about the \( y \)-axis, we can use the method of cylindrical shells to find the volume. **2. Method of Cylindrical Shells:** The formula for the volume \( V \) using cylindrical shells is: \[ V = 2\pi \int_{a}^{b} ( \text{radius} ) \times ( \text{height} ) \, dx \] In this context: - **Radius** is the distance from the \( y \)-axis, which is simply \( x \). - **Height** is the value of the function \( y = \frac{1}{x^{2}} \). **3. Setting Up the Integral:** Given the bounds \( x = 1 \) and \( x = 10 \), the integral becomes: \[ V = 2\pi \int_{1}^{10} x \times \frac{1}{x^{2}} \, dx \] Simplifying the integrand: \[ x \times \frac{1}{x^{2}} = \frac{1}{x} \] So, the integral simplifies to: \[ V = 2\pi \int_{1}^{10} \frac{1}{x} \, dx \] **4. Evaluating the Integral:** The integral of \( \frac{1}{x} \) with respect to \( x \) is \( \ln|x| \). Therefore: \[ V = 2\pi \left[ \ln|x| \right]_{1}^{10} \] Evaluating the definite integral: \[ V = 2\pi \left( \ln(10) - \ln(1) \right) \] Since \( \ln(1) = 0 \): \[ V = 2\pi \ln(10) \] **5. Final Answer:** The volume of the solid of revolution is: \[ V = 2\pi \ln(10) \ \text{cubic units} \] Approximately, since \( \ln(10) \approx 2.302585093 \): \[ V \approx 2\pi \times 2.302585093 \approx 14.4543 \ \text{cubic units} \] **Conclusion:** Using the method of cylindrical shells, we determined that the volume of the solid obtained by rotating the given region about the \( y \)-axis is \( 2\pi \ln(10) \) cubic units, which is approximately \( 14.4543 \) cubic units.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the volume of the solid of revolution generated by rotating the region bound by the graphs of \( y = \frac{1}{x^2} \), \( x = 1 \), \( x = 10 \), and \( y = 0 \) about the \( y \)-axis using the method of cylindrical shells, we start with the formula: \[ V = 2\pi \int_{a}^{b} x \cdot f(x) \, dx \] Here, \( f(x) \) represents the height of the shell, which is \( \frac{1}{x^2} \), and \( a=1 \) and \( b=10 \). Substituting our variables into the volume formula, we have: \[ V = 2\pi \int_{1}^{10} x \cdot \frac{1}{x^2} \, dx = 2\pi \int_{1}^{10} \frac{1}{x} \, dx \] Now, we compute the integral: \[ \int \frac{1}{x} \, dx = \ln |x| + C \] Evaluating the definite integral from 1 to 10 gives us: \[ \int_{1}^{10} \frac{1}{x} \, dx = \ln(10) - \ln(1) = \ln(10) \] Now substituting back into our volume equation: \[ V = 2\pi \cdot \ln(10) \] Thus, the volume of the solid of revolution generated by rotating the region about the \( y \)-axis is: \[ V = 2\pi \ln(10) \] This expression represents the volume, providing the complete answer as requested.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad