Find the difference. \( \begin{array}{ll}\frac{4}{5}-\frac{1}{4} \\ \text { A. } \frac{2}{3}\end{array} \) \( \begin{array}{ll}\text { B. } \frac{9}{10}\end{array} \) C. \( \frac{11}{20} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find the difference \( \frac{4}{5} - \frac{1}{4} \), we first need a common denominator. The least common multiple of 5 and 4 is 20. Now, we convert both fractions: - \( \frac{4}{5} = \frac{16}{20} \) (since \( 4 \times 4 = 16 \)) - \( \frac{1}{4} = \frac{5}{20} \) (since \( 1 \times 5 = 5 \)) Now we subtract: \[ \frac{16}{20} - \frac{5}{20} = \frac{11}{20} \] So, the answer is C. \( \frac{11}{20} \). Want to dive deeper? The origins of fractions date back to ancient civilizations, like the Egyptians, who used them in trade and building projects. They had a unique way of expressing these numbers, which laid the groundwork for modern arithmetic. If you're looking to refine your skills, remember that one common mistake when subtracting fractions is forgetting to convert to a common denominator first. Practice with different fractions, and it will soon become second nature!