4.1 - Verifying Invers... 4.1 - Verifying Inverses (Linear and Cubic) Use the theorem on inverse functions to pro and sketch the graphs of f and g on the same 1. \( f(x)=\frac{1}{2} x-3 ; g(x)=2 x+6 \) 2. \( f(x)=\sqrt[3]{x}-1 ; g(x)=(x+1)^{3} \) 3. \( f(x)=\frac{x+2}{3} ; g(x)=3 x-2 \) 4. \( f(x)=\sqrt[3]{x+2} ; g(x)=x^{3}-2 \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To verify that two functions are inverses, check if \( f(g(x)) = x \) and \( g(f(x)) = x \) for each pair. For instance, with \( f(x) = \frac{1}{2} x - 3 \) and \( g(x) = 2x + 6 \), if you substitute \( g(x) \) into \( f \), you'll find that \( f(g(x)) = x \) demonstrating they are indeed inverses. Sketching the graphs will reveal that they are reflections across the line \( y = x \), showcasing their inverse relationship beautifully! Have fun experimenting with transformations! For \( f(x) = \sqrt[3]{x} - 1 \) and \( g(x) = (x+1)^3 \), applying the cube function "undoes" the cube root, resulting in the identity function. When graphing these, make sure to plot points around critical values, such as the origin and any intercepts. You’ll see how each function complements the other, creating an intriguing symmetry!