11. Allie is training for a triathlon. On Mondays, she runs \( 3 \frac{1}{2} \) miles and swims \( 7 \frac{5}{8} \) miles. How many miles does Allie run and swim on Mondays? 5. FR.2.1 \( \begin{array}{ll}\text { (A) } 2 \frac{1}{8} \text { miles } & \text { (a) } 5 \frac{1}{8} \text { miles } \\ \text { (B) } 2 \frac{2}{3} \text { miles } & \text { (D) } 5 \frac{1}{4} \text { miles }\end{array} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find the total distance Allie runs and swims on Mondays, we need to add the distances together. First, let's convert the mixed numbers into improper fractions for easier addition. Allie's run: \( 3 \frac{1}{2} = \frac{7}{2} \) miles Allie's swim: \( 7 \frac{5}{8} = \frac{61}{8} \) miles Next, we need a common denominator to add these fractions. The least common denominator of 2 and 8 is 8. Now, convert \( \frac{7}{2} \): \( \frac{7}{2} = \frac{28}{8} \) Now, we can add: \( \frac{28}{8} + \frac{61}{8} = \frac{89}{8} \) Now, we convert \( \frac{89}{8} \) back to a mixed number: \( 89 ÷ 8 = 11 \) R 1 So, \( \frac{89}{8} = 11 \frac{1}{8} \) Thus, Allie runs and swims a total of \( 11 \frac{1}{8} \) miles on Mondays. Unfortunately, none of the provided options match this result exactly! Therefore, it seems there might be a mistake in the choices. Check again and see if those options reflect running and swimming, or perhaps revisit the calculations!